Aix Marseille Univ, CEA, CNRS, BIAM, LEMIRE, 13108, Saint Paul-Lez-Durance, France.
CNRS, Institut de Biologie Paris-Seine, Laboratoire Jean Perrin (UMR8237), Sorbonne Université, 75005, Paris, France.
Sci Rep. 2021 Jun 3;11(1):11763. doi: 10.1038/s41598-021-91260-w.
Two-component systems (TCSs) are ubiquitous signaling pathways, typically comprising a sensory histidine kinase (HK) and a response regulator, which communicate via intermolecular kinase-to-receiver domain phosphotransfer. Hybrid HKs constitute non-canonical TCS signaling pathways, with transmitter and receiver domains within a single protein communicating via intramolecular phosphotransfer. Here, we report how evolutionary relationships between hybrid HKs can be used as predictors of potential intermolecular and intramolecular interactions ('phylogenetic promiscuity'). We used domain-swap genes chimeras to investigate the specificity of phosphotransfer within hybrid HKs of the GacS-GacA multikinase network of Pseudomonas brassicacearum. The receiver domain of GacS was replaced with those from nine donor hybrid HKs. Three chimeras with receivers from other hybrid HKs demonstrated correct functioning through complementation of a gacS mutant, which was dependent on strains having a functional gacA. Formation of functional chimeras was predictable on the basis of evolutionary heritage, and raises the possibility that HKs sharing a common ancestor with GacS might remain components of the contemporary GacS network. The results also demonstrate that understanding the evolutionary heritage of signaling domains in sophisticated networks allows their rational rewiring by simple domain transplantation, with implications for the creation of designer networks and inference of functional interactions.
双组分系统(TCSs)是普遍存在的信号通路,通常由感应组氨酸激酶(HK)和应答调节蛋白组成,它们通过分子间激酶-受体域磷酸转移进行通讯。混合 HK 构成了非典型的 TCS 信号通路,其发射器和接收器域位于单个蛋白质内,通过分子内磷酸转移进行通讯。在这里,我们报告了如何将混合 HK 之间的进化关系用作潜在分子间和分子内相互作用的预测因子(“系统发育混杂性”)。我们使用结构域交换基因嵌合体来研究 Pseudomonas brassicacearum 的 GacS-GacA 多激酶网络中混合 HK 内磷酸转移的特异性。GacS 的受体域被来自九个供体混合 HK 的受体域取代。来自其他混合 HK 的三个嵌合体受体通过互补 gacS 突变体表现出正确的功能,这取决于菌株是否具有功能正常的 gacA。基于进化遗传背景,功能性嵌合体的形成是可预测的,这增加了与 GacS 具有共同祖先的 HK 可能仍然是当代 GacS 网络的组成部分的可能性。结果还表明,理解复杂网络中信号域的进化遗传背景允许通过简单的结构域移植对其进行合理的重新布线,这对创建设计网络和推断功能相互作用具有重要意义。