Suppr超能文献

阿奇霉素和环丙沙星会促进生物固体和添加生物固体的土壤中的抗生素耐药性。

Azithromycin and Ciprofloxacin Can Promote Antibiotic Resistance in Biosolids and Biosolids-Amended Soils.

机构信息

Soil and Water Sciences Department, University of Floridagrid.15276.37, Gainesville, Florida, USA.

Interdisciplinary Center for Biotechnology Research (ICBR), University of Floridagrid.15276.37, Gainesville, Florida, USA.

出版信息

Appl Environ Microbiol. 2021 Jul 27;87(16):e0037321. doi: 10.1128/AEM.00373-21.

Abstract

Spread of biosolids-borne antibiotic resistance is a growing public and environmental health concern. Herein, we conducted incubation experiments involving biosolids, which are byproducts of sewage treatment processes, and biosolids-amended soil. Quantitative reverse transcription-PCR (RT-qPCR) was employed to assess responses of select antibiotic resistance genes (ARGs) and mobile elements to environmentally relevant concentrations of two biosolids-borne antibiotics, azithromycin (AZ) and ciprofloxacin (CIP). Additionally, we examined sequence distribution of (encoding DNA gyrase; site of action of CIP) to assess potential shifts in genotype. Increasing antibiotic concentrations generally increased the transcriptional activities of (encoding CIP resistance) and and (encoding AZ resistance). The transcriptional activity of , a marker of class 1 integrons, was unaffected by CIP or AZ concentrations, but biosolids amendment increased activity in the soil by 4 to 5 times, which persisted throughout incubation. While the dominant sequences found herein were unrelated to known CIP-resistant genotypes, the increasing CIP concentrations significantly decreased the diversity of genes encoding the DNA gyrase A subunit, suggesting changes in microbial community structures. This study suggests that biosolids harbor transcriptionally active ARGs and mobile elements that could survive and spread in biosolids-amended soils. However, more research is warranted to investigate these trends under field conditions. Although previous studies have indicated that biosolids may be important spreaders of antibiotics and antibiotic resistance genes (ARGs) in environments, the potential activities of ARGs or their responses to environmental parameters have been understudied. This study highlights that certain biosolids-borne antibiotics can induce transcriptional activities of ARGs and mobile genetic elements in biosolids and biosolids-amended soil, even when present at environmentally relevant concentrations. Furthermore, these antibiotics can alter the structure of microbial populations expressing ARGs. Our findings indicate the bioavailability of the antibiotics in biosolids and provide evidence that biosolids can promote the activities and dissemination of ARGs and mobile genes in biosolids and soils that receive contaminated biosolids, thus, underscoring the importance of investigating anthropogenically induced antibiotic resistance in the environment under real-world scenarios.

摘要

生物固体传播的抗生素抗性是一个日益严重的公共和环境健康问题。在此,我们进行了涉及生物固体(污水处理过程的副产品)和添加生物固体的土壤的孵育实验。采用定量逆转录 PCR(RT-qPCR)评估了两种生物固体携带的抗生素(阿奇霉素(AZ)和环丙沙星(CIP))的环境相关浓度对选择抗生素抗性基因(ARGs)和移动元件的响应。此外,我们还检查了 (编码 DNA 拓扑异构酶;CIP 的作用位点)的序列分布,以评估基因型可能发生的变化。抗生素浓度的增加通常会增加 (编码 CIP 抗性)和 和 (编码 AZ 抗性)的转录活性。类 1 整合子的标记 的转录活性不受 CIP 或 AZ 浓度的影响,但生物固体的添加使土壤中的 活性增加了 4 到 5 倍,并且在孵育过程中一直持续。虽然本文中发现的主要 序列与已知的 CIP 抗性基因型无关,但不断增加的 CIP 浓度显著降低了编码 DNA 拓扑异构酶 A 亚基的基因的多样性,表明微生物群落结构发生了变化。本研究表明,生物固体中含有转录活性的 ARGs 和移动元件,这些基因可能在添加生物固体的土壤中存活和传播。然而,需要进行更多的研究来调查这些趋势在野外条件下的情况。虽然先前的研究表明,生物固体可能是环境中抗生素和抗生素抗性基因(ARGs)的重要传播者,但 ARGs 的潜在活性或它们对环境参数的响应仍未得到充分研究。本研究强调,某些生物固体携带的抗生素即使在环境相关浓度下也能诱导生物固体和生物固体添加土壤中 ARGs 和可移动遗传元件的转录活性。此外,这些抗生素可以改变表达 ARGs 的微生物种群的结构。我们的研究结果表明了生物固体中抗生素的生物可利用性,并提供了证据表明生物固体可以促进生物固体和接收污染生物固体的土壤中 ARGs 和移动基因的活性和传播,从而强调了在现实世界场景下研究人为诱导的环境中抗生素抗性的重要性。

相似文献

1
Azithromycin and Ciprofloxacin Can Promote Antibiotic Resistance in Biosolids and Biosolids-Amended Soils.
Appl Environ Microbiol. 2021 Jul 27;87(16):e0037321. doi: 10.1128/AEM.00373-21.
2
Plant toxicity and accumulation of biosolids-borne ciprofloxacin and azithromycin.
Sci Total Environ. 2019 Jan 15;648:1219-1226. doi: 10.1016/j.scitotenv.2018.08.218. Epub 2018 Aug 17.
3
Bioavailability of biosolids-borne ciprofloxacin and azithromycin to terrestrial organisms: Microbial toxicity and earthworm responses.
Sci Total Environ. 2019 Feb 10;650(Pt 1):18-26. doi: 10.1016/j.scitotenv.2018.09.004. Epub 2018 Sep 3.
4
Retention-release of ciprofloxacin and azithromycin in biosolids and biosolids-amended soils.
Sci Total Environ. 2019 Feb 10;650(Pt 1):173-183. doi: 10.1016/j.scitotenv.2018.09.005. Epub 2018 Sep 3.
5
Risk assessment of biosolids-borne ciprofloxacin and azithromycin.
Sci Total Environ. 2019 Feb 15;651(Pt 2):3151-3160. doi: 10.1016/j.scitotenv.2018.10.194. Epub 2018 Oct 15.
6
Effect of biosolids characteristics on retention and release behavior of azithromycin and ciprofloxacin.
Environ Res. 2020 May;184:109333. doi: 10.1016/j.envres.2020.109333. Epub 2020 Mar 4.
7
Field-based evidence for enrichment of antibiotic resistance genes and mobile genetic elements in manure-amended vegetable soils.
Sci Total Environ. 2019 Mar 1;654:906-913. doi: 10.1016/j.scitotenv.2018.10.446. Epub 2018 Nov 3.
8
Field-based evidence for copper contamination induced changes of antibiotic resistance in agricultural soils.
Environ Microbiol. 2016 Nov;18(11):3896-3909. doi: 10.1111/1462-2920.13370. Epub 2016 Jul 12.
9
Detection of antibacterial-like activity on a silica surface: fluoroquinolones and their environmental metabolites.
Environ Sci Pollut Res Int. 2011 Aug;19(7):2795-801. doi: 10.1007/s11356-012-0781-8. Epub 2012 Feb 5.
10
Responses of the Soil Bacterial Community, Resistome, and Mobilome to a Decade of Annual Exposure to Macrolide Antibiotics.
Appl Environ Microbiol. 2022 Apr 26;88(8):e0031622. doi: 10.1128/aem.00316-22. Epub 2022 Apr 6.

本文引用的文献

1
Effects of ofloxacin on nitrogen removal and microbial community structure in constructed wetland.
Sci Total Environ. 2019 Mar 15;656:503-511. doi: 10.1016/j.scitotenv.2018.11.358. Epub 2018 Nov 27.
2
Plant toxicity and accumulation of biosolids-borne ciprofloxacin and azithromycin.
Sci Total Environ. 2019 Jan 15;648:1219-1226. doi: 10.1016/j.scitotenv.2018.08.218. Epub 2018 Aug 17.
4
Antibiotic Effects on Microbial Communities Responsible for Denitrification and NO Production in Grassland Soils.
Front Microbiol. 2018 Sep 11;9:2121. doi: 10.3389/fmicb.2018.02121. eCollection 2018.
5
Retention-release of ciprofloxacin and azithromycin in biosolids and biosolids-amended soils.
Sci Total Environ. 2019 Feb 10;650(Pt 1):173-183. doi: 10.1016/j.scitotenv.2018.09.005. Epub 2018 Sep 3.
6
Bioavailability of biosolids-borne ciprofloxacin and azithromycin to terrestrial organisms: Microbial toxicity and earthworm responses.
Sci Total Environ. 2019 Feb 10;650(Pt 1):18-26. doi: 10.1016/j.scitotenv.2018.09.004. Epub 2018 Sep 3.
7
Toward a Comprehensive Strategy to Mitigate Dissemination of Environmental Sources of Antibiotic Resistance.
Environ Sci Technol. 2017 Nov 21;51(22):13061-13069. doi: 10.1021/acs.est.7b03623. Epub 2017 Oct 30.
8
The Prevalence of Integrons as the Carrier of Antibiotic Resistance Genes in Natural and Man-Made Environments.
Environ Sci Technol. 2017 May 16;51(10):5721-5728. doi: 10.1021/acs.est.6b05887. Epub 2017 Apr 28.
10
Review of Antimicrobial Resistance in the Environment and Its Relevance to Environmental Regulators.
Front Microbiol. 2016 Nov 1;7:1728. doi: 10.3389/fmicb.2016.01728. eCollection 2016.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验