Suppr超能文献

一种通用的 QSPR 协议,用于预测原子/原子间性质:基于片段的图卷积神经网络(F-GCN)。

A general QSPR protocol for the prediction of atomic/inter-atomic properties: a fragment based graph convolutional neural network (F-GCN).

机构信息

School of Chemistry and Molecular Bioscience, University of Wollongong, NSW 2500, Australia.

Centre of Chemistry and Chemical Biology, Bioland Laboratory (Guangzhou Regenerative Medicine and Health-Guangdong Laboratory), Guangzhou 53000, China.

出版信息

Phys Chem Chem Phys. 2021 Jun 16;23(23):13242-13249. doi: 10.1039/d1cp00677k.

Abstract

In this study, a general quantitative structure-property relationship (QSPR) protocol, fragment based graph convolutional neural network (F-GCN), was developed for the prediction of atomic/inter-atomic properties. We applied this novel artificial intelligence (AI) tool in predictions of NMR chemical shifts and bond dissociation energies (BDEs). The obtained results were comparable to experimental measurements, while the computational cost was substantially reduced, with respect to pure density functional theory (DFT) calculations. The two important features of F-GCN can be summarised as: first, it could utilise different levels of molecular fragments for atomic/inter-atomic information extraction; second, the designed architecture is also open to include additional descriptors for a more accurate solution of the local environment at atomic level, making itself more efficient for structural solutions. And during our test, the averaged prediction error of 1H NMR chemical shifts is as small as 0.32 ppm, and the error of C-H BDE estimation is 2.7 kcal mol-1. Moreover, we further demonstrated the applicability of this developed F-GCN model via several challenging structural assignments. The success of the F-GCN in atomic and inter-atomic predictions also indicates an essential improvement of computational chemistry with the assistance of AI tools.

摘要

在这项研究中,我们开发了一种通用的定量结构-性质关系(QSPR)协议,即基于片段的图卷积神经网络(F-GCN),用于预测原子/原子间性质。我们将这种新的人工智能(AI)工具应用于 NMR 化学位移和键离解能(BDE)的预测中。所得结果与实验测量值相当,而计算成本相对于纯密度泛函理论(DFT)计算则大大降低。F-GCN 的两个重要特点可以概括为:首先,它可以利用不同层次的分子片段来提取原子/原子间的信息;其次,所设计的架构也可以包含其他描述符,以更准确地解决原子级别的局部环境问题,从而使其在结构解决方案方面更高效。在我们的测试中,1H NMR 化学位移的平均预测误差小至 0.32 ppm,C-H BDE 估计的误差为 2.7 kcal mol-1。此外,我们还通过几个具有挑战性的结构分配进一步证明了这种开发的 F-GCN 模型的适用性。F-GCN 在原子和原子间预测中的成功也表明,借助 AI 工具,计算化学取得了实质性的进展。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验