Suppr超能文献

Electron microscopy of plasticity in rat olfactory cortex.

作者信息

Westrum L E

机构信息

Department of Neurological Surgery, University of Washington, Seattle 98195.

出版信息

Brain Res. 1988 Jul 1;470(1):29-43. doi: 10.1016/0165-3806(88)90199-x.

Abstract

Electron microscopy (EM) is being used to study the ultrastructural basis for the age-dependent reorganization of afferents in the olfactory cortex (OC) of rat after deafferentation of the area by removal of the ipsilateral olfactory bulb (OB). The double-lesion technique was used with a primary lesion of the OB at various postnatal (PN) ages between PN 0 and 30 and in the adult (PN 100). After appropriate survival times to remove initial lesion-degenerated terminals from the OB lesion, a second lesion was placed in the ipsilateral OC. One to 3 days later the tissue is prepared for EM with emphasis on a study of changes in the superficial and deep dendritic layer (Ia and Ib respectively) rostral to the lesion. In control litter mates with both OBs intact, but with a single OC lesion only, degenerating synaptic terminals occur onto dendritic spines and branches only in deeper Ib. However, in adults with OB lesions at PN 0-9, OC lesions produce degenerating terminals throughout Ia and Ib including immediately subjacent to the pia. In Ia degenerating terminals are greatly reduced in the PN 13 group and rare to absent in experiments with OB lesions at older ages (PN 30-100). Electron-dense debris within glia occurs throughout layer I in each double-lesion group but is greatest in experiments with OB lesions at older ages. Some transsynaptic alterations are seen throughout, especially in the PN 30-100 group even at a distance from the OC lesion. The results support earlier light microscopic (LM) findings, suggesting PN 9-13 as critical ages for developmental plasticity and prove that at least in the younger ages, synapses are involved in the phenomenon. This may be explained by either reinnervation of deafferented sites or persistence of synapses that would otherwise have been eliminated by afferents from the OB. In addition, some of the LM degeneration particles probably are engulfed masses of debris and not synaptic structures, especially in cases which were operated at older ages and survived for 3 days. The various afferent pathways involved in the events as well as factors that limit the phenomenon in older ages are discussed.

摘要

相似文献

1
Electron microscopy of plasticity in rat olfactory cortex.
Brain Res. 1988 Jul 1;470(1):29-43. doi: 10.1016/0165-3806(88)90199-x.
2
Plasticity in the rat olfactory cortex.大鼠嗅觉皮层的可塑性。
J Comp Neurol. 1986 Jan 8;243(2):195-206. doi: 10.1002/cne.902430205.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验