All India Institute of Medical Sciences, New Delhi, Delhi, India.
Department of Medical Oncology, Tom Baker Cancer Center, Calgary, Alberta, Canada; Cumming School of Medicine, University of Calgary, Alberta, Canada.
Cancer Treat Res Commun. 2021;28:100401. doi: 10.1016/j.ctarc.2021.100401. Epub 2021 May 26.
Patients with hormone receptor (HR)-positive, human epidermal growth factor receptor-2 (HER2)-negative, node negative (NN) breast cancer may be offered a gene expression profiling (GEP) test to determine recurrence risk and benefit of adjuvant chemotherapy. We developed a clinical-pathologic (CP) model to predict genomic recurrence risk and examined its performance characteristics.
Patients diagnosed with HR-positive, HER2-negative, NN breast cancer with a tumour size < 30 mm and who underwent a GEP test [OncotypeDX or Prosigna] in Alberta from October 2017 through March 2019 were identified. Patients were classified as low or high genomic risk. Multivariable logistic regression analysis was performed to examine the associations of CP factors with genomic risk. A CP model was developed using coefficients of regression and sensitivity analyses were performed.
A total of 366 patients were eligible (135 were tested using OncotypeDX and 231 with Prosigna). Of these, 64 (17.5%) patients were classified as high genomic risk. On multivariable logistic regression, tumour size > 20 mm (odds ratio [OR], 3.58; 95% confidence interval [CI], 1.84-6.98; P<0.001), low expression of progesterone receptor (OR, 3.46; 95% CI, 1.76-6.82; P<0.001), and histological grade III (OR, 7.24; 95% CI, 3.82-13.70; P<0.001) predicted high genomic risk. A CP model using these variables was developed to provide a score of 0-4. A CP cut-point of 0, identified 56% of genomic low risk patients with a specificity of 98.4%.
A CP model could be used to narrow the population of breast cancer patients undergoing GEP testing.
激素受体(HR)阳性、人表皮生长因子受体-2(HER2)阴性、淋巴结阴性(NN)乳腺癌患者可能会接受基因表达谱(GEP)检测,以确定复发风险和辅助化疗的获益。我们开发了一种临床病理(CP)模型来预测基因组复发风险,并检验了其性能特征。
我们在 2017 年 10 月至 2019 年 3 月期间,在艾伯塔省识别出 HR 阳性、HER2 阴性、NN 乳腺癌且肿瘤大小<30mm、接受 GEP 检测(OncotypeDX 或 Prosigna)的患者。患者被分为低或高基因组风险。多变量逻辑回归分析用于检查 CP 因素与基因组风险的相关性。使用回归系数开发了 CP 模型,并进行了敏感性分析。
共纳入 366 名符合条件的患者(135 名患者接受 OncotypeDX 检测,231 名患者接受 Prosigna 检测)。其中,64 名(17.5%)患者被归类为高基因组风险。多变量逻辑回归分析显示,肿瘤大小>20mm(比值比[OR],3.58;95%置信区间[CI],1.84-6.98;P<0.001)、孕激素受体低表达(OR,3.46;95% CI,1.76-6.82;P<0.001)和组织学分级 III(OR,7.24;95% CI,3.82-13.70;P<0.001)预测高基因组风险。使用这些变量开发了 CP 模型,以提供 0-4 分的评分。CP 截断值为 0 时,可识别出 56%的基因组低风险患者,特异性为 98.4%。
CP 模型可用于缩小接受 GEP 检测的乳腺癌患者人群。