Suppr超能文献

AutoDep:基于线性二值模式描述符的面部表情自动抑郁检测。

AutoDep: automatic depression detection using facial expressions based on linear binary pattern descriptor.

机构信息

Malaviya National Institute of Technology, Jaipur, India.

出版信息

Med Biol Eng Comput. 2021 Jun;59(6):1339-1354. doi: 10.1007/s11517-021-02358-2. Epub 2021 Jun 5.

Abstract

The psychological health of a person plays an important role in their daily life activities. The paper addresses depression issues with the machine learning model using facial expressions of the patient. Some research has already been done on visual based on depression detection methods, but those are illumination variant. The paper uses feature extraction using LBP (Local Binary Pattern) descriptor, which is illumination invariant. The Viola-Jones algorithm is used for face detection and SVM (support vector machine) is considered for classification along with the LBP descriptor to make a complete model for depression level detection. The proposed method captures frontal face from the videos of subjects and their facial features are extracted from each frame. Subsequently, the facial features are analyzed to detect depression levels with the post-processing model. The performance of the proposed system is evaluated using machine learning algorithms in MATLAB. For the real-time system design, it is necessary to test it on the hardware platform. The LBP descriptor has been implemented on FPGA using Xilinx VIVADO 16.4. The results of the proposed method show satisfactory performance and accuracy for depression detection comparison with similar previous work.

摘要

一个人的心理健康在他们的日常生活活动中起着重要的作用。本文使用患者的面部表情来解决机器学习模型中的抑郁问题。已经有一些关于基于视觉的抑郁检测方法的研究,但那些方法存在光照变化的问题。本文使用局部二值模式(LBP)描述符进行特征提取,该描述符具有光照不变性。使用 Viola-Jones 算法进行人脸检测,支持向量机(SVM)与 LBP 描述符一起用于分类,以构建完整的抑郁水平检测模型。该方法从受试者的视频中捕获正面人脸,并从每一帧中提取面部特征。然后,通过后处理模型分析面部特征来检测抑郁水平。该系统的性能使用 MATLAB 中的机器学习算法进行评估。对于实时系统设计,有必要在硬件平台上进行测试。该 LBP 描述符已经在 Xilinx VIVADO 16.4 上的 FPGA 上实现。与类似的先前工作相比,所提出的方法在抑郁检测方面表现出令人满意的性能和准确性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验