Faculty of Engineering and Environment, Department of Computer and Information Sciences, Northumbria University, Newcastle upon Tyne NE1 8ST, UK.
Department of Computer Science, Royal Holloway, University of London, Surrey TW20 0EX, UK.
Sensors (Basel). 2022 Nov 9;22(22):8635. doi: 10.3390/s22228635.
With a large number of Local Binary Patterns (LBP) variants being currently used today, the significant and importance of visual descriptors in computer vision applications are prominent. This paper presents a novel visual descriptor, i.e., SIM-LBP. It employs a new matrix technique called the Symmetric Inline Matrix generator method, which acts as a new variant of LBP. The key feature that separates our variant from existing counterparts is that our variant is very efficient in extracting facial expression features like eyes, eye brows, nose and mouth in a wide range of lighting conditions. For testing our model, we applied SIM-LBP on the JAFFE dataset to convert all the images to its corresponding SIM-LBP transformed variant. These transformed images are then used to train a Convolution Neural Network (CNN) based deep learning model for facial expressions recognition (FER). Several performance evaluation metrics, i.e., recognition accuracy rate, precision, recall, and F1-score, were used to test mode efficiency in comparison with those using the traditional LBP descriptor and other LBP variants. Our model outperformed in all four matrices with the proposed SIM-LBP transformation on the input images against those of baseline methods. In comparison analysis with the other state-of-the-art methods, it shows the usefulness of the proposed SIM-LBP model. Our proposed SIM-LBP variant transformation can also be applied on facial images to identify a person's mental states and predict mood variations.
目前有大量的局部二值模式(LBP)变体被应用,视觉描述符在计算机视觉应用中的重要性和显著性非常突出。本文提出了一种新的视觉描述符,即 SIM-LBP。它采用了一种新的矩阵技术,称为对称内联矩阵生成方法,它是 LBP 的一种新变体。我们的变体与现有变体的主要区别在于,它非常有效地提取面部表情特征,如眼睛、眉毛、鼻子和嘴巴,并且适用于广泛的光照条件。为了测试我们的模型,我们将 SIM-LBP 应用于 JAFFE 数据集,将所有图像转换为相应的 SIM-LBP 变换变体。然后,这些变换后的图像被用于训练基于卷积神经网络(CNN)的深度学习模型,以进行面部表情识别(FER)。我们使用了几种性能评估指标,即识别准确率、精度、召回率和 F1 分数,与传统 LBP 描述符和其他 LBP 变体进行了比较,以测试模型的效率。我们的模型在所有四个矩阵中都表现出色,与基线方法相比,输入图像的 SIM-LBP 变换效果更好。与其他最先进的方法进行对比分析,证明了所提出的 SIM-LBP 模型的有效性。我们提出的 SIM-LBP 变体变换也可以应用于面部图像,以识别一个人的精神状态和预测情绪变化。