Prochaska H J, Talalay P
Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205.
Cancer Res. 1988 Sep 1;48(17):4776-82.
Anticarcinogenic enzyme inducers are of two types: (a) bifunctional inducers [2,3,7,8-tetrachlorodibenzo-p-dioxin, polycyclic aromatics, azo dyes, beta-naphthoflavone] that elevate both Phase II enzymes [e.g., glutathione S-transferases, UDP-glucuronosyltransferases, and NAD(P)H:(quinone-acceptor) oxidoreductase] and certain Phase I enzymes [e.g., aryl hydrocarbon hydroxylase (AHH)]; and (b) monofunctional inducers [e.g., diphenols, thiocarbamates, 1,2-dithiol-3-thiones, isothiocyanates] that elevate primarily Phase II enzymes without significantly affecting AHH. Since Phase I enzymes such as AHH may activate precarcinogens to ultimate carcinogens whereas Phase II enzyme induction suffices to achieve chemoprotection, an understanding of the molecular mechanisms that regulate these enzymes is critical for devising methods for chemoprotection. We report a systematic analysis of the inductions of aryl hydrocarbon hydroxylase (AHH) and NAD(P)H:quinone reductase (QR) by seven monofunctional and eight bifunctional inducers, singly or in combination, in a murine hepatoma cell line (Hepa 1c1c7) and two mutants defective in either Ah (Aryl hydrocarbon) receptor function (BPrc1) or in AHH expression (c1). We have also examined such inductions in genetically defined mouse strains with high affinity (C57BL/6J) and low affinity (DBA/2J) Ah receptors. The combination of our earlier model for the induction of Phase I and Phase II enzymes (H. J. Prochaska, M. J. De Long, and P. Talalay, Proc. Natl. Acad. Sci. USA, 82: 8232, 1985) with mechanism(s) for autoregulation of AHH (O. Hankinson, R. D. Anderson, B. W. Birren, F. Sander, M. Negishi, and D. W. Nebert, J. Biol. Chem., 260: 1790, 1985) is compatible with our results. Thus, induction of QR by monofunctional inducers does not depend on a competent Ah receptor or AHH activity and appears to involve an electrophilic chemical signal. In contrast, bifunctional inducers require competent Ah receptors to induce both AHH and QR, although the latter process appears to be regulated by more than one mechanism. It is our view that bifunctional inducers bind to the Ah receptor thereby enhancing transcription of genes encoding both AHH and QR. Metabolizable bifunctional inducers are then converted by the induced AHH to products that resemble monofunctional inducers and are capable of generating the aforementioned chemical signal. The existence of mechanism(s) for AHH autoregulation that also affect Phase II enzyme expression would account for the high basal activities of QR in the AHH-defective mutant (c1).
(a) 双功能诱导剂 [2,3,7,8-四氯二苯并 -p-二恶英、多环芳烃、偶氮染料、β-萘黄酮],可同时提高II相酶 [如谷胱甘肽S-转移酶、UDP-葡糖醛酸基转移酶和NAD(P)H:(醌-受体)氧化还原酶] 和某些I相酶 [如芳烃羟化酶(AHH)] 的水平;(b) 单功能诱导剂 [如双酚、硫代氨基甲酸盐、1,2-二硫醇-3-硫酮、异硫氰酸盐],主要提高II相酶水平,而对AHH影响不大。由于诸如AHH之类的I相酶可能将前致癌物激活为终致癌物,而诱导II相酶就足以实现化学保护作用,因此了解调节这些酶的分子机制对于设计化学保护方法至关重要。我们报告了对七种单功能和八种双功能诱导剂单独或联合诱导小鼠肝癌细胞系(Hepa 1c1c)以及两种在Ah(芳烃)受体功能(BPrc1)或AHH表达(c1)方面有缺陷的突变体中芳烃羟化酶(AHH)和NAD(P)H:醌还原酶(QR)的系统分析。我们还在具有高亲和力(C57BL/6J)和低亲和力(DBA/2J)Ah受体的基因定义小鼠品系中研究了此类诱导作用。我们早期关于I相和II相酶诱导的模型(H. J. Prochaska, M. J. De Long, and P. Talalay, Proc. Natl. Acad. Sci. USA, 82: 8232, 1985)与AHH自动调节机制(O. Hankinson, R. D. Anderson, B. W. Birren, F. Sander, M. Negishi, and D. W. Nebert, J. Biol. Chem., 260: 1790, 1985)相结合与我们的结果相符。因此,单功能诱导剂对QR的诱导不依赖于有功能的Ah受体或AHH活性,似乎涉及亲电化学信号。相反,双功能诱导剂需要有功能的Ah受体来诱导AHH和QR,尽管后者的过程似乎受多种机制调节。我们认为双功能诱导剂与Ah受体结合从而增强编码AHH和QR的基因的转录。可代谢的双功能诱导剂然后被诱导的AHH转化为类似于单功能诱导剂的产物,并能够产生上述化学信号。存在也影响II相酶表达的AHH自动调节机制可以解释AHH缺陷突变体(c1)中QR的高基础活性。