Suppr超能文献

大数据对食品链中动态食品安全风险管理的影响。

Big Data Impacting Dynamic Food Safety Risk Management in the Food Chain.

作者信息

Donaghy John A, Danyluk Michelle D, Ross Tom, Krishna Bobby, Farber Jeff

机构信息

Corporate Operations - Quality Management (Food Safety) Société des Produits Nestlé S.A., Vevey, Switzerland.

IFAS Food Science and Human Nutrition, University of Florida, Gainesville, FL, United States.

出版信息

Front Microbiol. 2021 May 21;12:668196. doi: 10.3389/fmicb.2021.668196. eCollection 2021.

Abstract

Foodborne pathogens are a major contributor to foodborne illness worldwide. The adaptation of a more quantitative risk-based approach, with metrics such as Food safety Objectives (FSO) and Performance Objectives (PO) necessitates quantitative inputs from all stages of the food value chain. The potential exists for utilization of big data, generated through digital transformational technologies, as inputs to a dynamic risk management concept for food safety microbiology. The industrial revolution in Internet of Things (IoT) will leverage data inputs from precision agriculture, connected factories/logistics, precision healthcare, and precision food safety, to improve the dynamism of microbial risk management. Furthermore, interconnectivity of public health databases, social media, and e-commerce tools as well as technologies such as blockchain will enhance traceability for retrospective and real-time management of foodborne cases. Despite the enormous potential of data volume and velocity, some challenges remain, including data ownership, interoperability, and accessibility. This paper gives insight to the prospective use of big data for dynamic risk management from a microbiological safety perspective in the context of the International Commission on Microbiological Specifications for Foods (ICMSF) conceptual equation, and describes examples of how a dynamic risk management system (DRMS) could be used in real-time to identify hazards and control Shiga toxin-producing risks related to leafy greens.

摘要

食源性病原体是全球食源性疾病的主要促成因素。采用更基于风险定量的方法,如食品安全目标(FSO)和性能目标(PO)等指标,需要来自食品价值链各阶段的定量数据输入。利用数字转型技术产生的大数据作为食品安全微生物学动态风险管理概念的输入数据具有可能性。物联网(IoT)的工业革命将利用精准农业、互联工厂/物流、精准医疗和精准食品安全的数据输入,以提高微生物风险管理的动态性。此外,公共卫生数据库、社交媒体和电子商务工具的互联互通以及区块链等技术将增强食源性病例追溯和实时管理的可追溯性。尽管数据量和速度潜力巨大,但仍存在一些挑战,包括数据所有权、互操作性和可访问性。本文从食品微生物标准国际委员会(ICMSF)概念方程的角度,深入探讨了从微生物安全角度前瞻性地利用大数据进行动态风险管理,并描述了动态风险管理系统(DRMS)如何实时用于识别危害和控制与绿叶蔬菜相关的产志贺毒素风险的示例。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fd1b/8177817/b3cc445619e5/fmicb-12-668196-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验