Wang Jiajun, Prajapati Jigneshkumar Dahyabhai, Kleinekathöfer Ulrich, Winterhalter Mathias
State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 China
Department of Physics and Earth Sciences, Jacobs University Bremen 28759 Germany.
Chem Sci. 2020 Aug 31;11(38):10344-10353. doi: 10.1039/d0sc03486j.
Divalent ions are known to have a severe effect on the translocation of several antibiotic molecules into (pathogenic) bacteria. In the present study we have investigated the effect of divalent ions on the permeability of norfloxacin across the major outer membrane channels from (OmpF and OmpC) and (Omp35 and Omp36) at the single channel level. To understand the rate limiting steps in permeation, we reconstituted single porins into planar lipid bilayers and analyzed the ion current fluctuations caused in the presence of norfloxacin. Moreover, to obtain an atomistic view, we complemented the experiments with millisecond-long free energy calculations based on temperature-accelerated Brownian dynamics simulations to identify the most probable permeation pathways of the antibiotics through the respective pores. Both, the experimental analysis and the computational modelling, suggest that norfloxacin is able to permeate through the larger porins, , OmpF, OmpC, and Omp35, whereas it only binds to the slightly narrower porin Omp36. Moreover, divalent ions can bind to negatively charged residues inside the porin, reversing the ion selectivity of the pore. In addition, the divalent ions can chelate with the fluoroquinolone molecules and alter their physicochemical properties. The results suggest that the conjugation with either pores or molecules must break when the antibiotic molecules pass the lumen of the porin, with the conjugation to the antibiotic being more stable than that to the respective pore. In general, the permeation or binding process of fluoroquinolones in porins occurs irrespective of the presence of divalent ions, but the presence of divalent ions can vary the kinetics significantly. Thus, a detailed investigation of the interplay of divalent ions with antibiotics and pores is of key importance in developing new antimicrobial drugs.
已知二价离子对几种抗生素分子转运进入(致病)细菌有严重影响。在本研究中,我们在单通道水平上研究了二价离子对诺氟沙星穿过主要外膜通道(OmpF和OmpC)以及(Omp35和Omp36)的通透性的影响。为了了解渗透过程中的限速步骤,我们将单个孔蛋白重组到平面脂质双分子层中,并分析了诺氟沙星存在时引起的离子电流波动。此外,为了获得原子层面的观点,我们基于温度加速布朗动力学模拟进行了长达毫秒级的自由能计算,以补充实验,从而确定抗生素通过各自孔道的最可能渗透途径。实验分析和计算建模均表明,诺氟沙星能够透过较大的孔蛋白,即、OmpF、OmpC和Omp35,而它仅与稍窄的孔蛋白Omp36结合。此外,二价离子可以结合到孔蛋白内部带负电荷的残基上,从而逆转孔道的离子选择性。另外,二价离子可以与氟喹诺酮分子螯合并改变其物理化学性质。结果表明,当抗生素分子通过孔蛋白腔时,与孔道或分子的结合必须断裂,且与抗生素的结合比与各自孔道的结合更稳定。一般来说,氟喹诺酮类药物在孔蛋白中的渗透或结合过程与二价离子的存在无关,但二价离子的存在会显著改变动力学。因此,详细研究二价离子与抗生素和孔道之间的相互作用对于开发新型抗菌药物至关重要。