Kephart Jonathan A, Romero Catherine G, Tseng Chun-Chih, Anderton Kevin J, Yankowitz Matthew, Kaminsky Werner, Velian Alexandra
Department of Chemistry, University of Washington Seattle Washington 98195 USA
Department of Physics, University of Washington Seattle Washington 98195 USA.
Chem Sci. 2020 Aug 3;11(39):10744-10751. doi: 10.1039/d0sc03506h.
Tuning the properties of atomic crystals in the two-dimensional (2D) limit is synthetically challenging, but critical to unlock their potential in fundamental research and nanotechnology alike. 2D crystals assembled using superatomic blocks could provide a route to encrypt desirable functionality, yet strategies to link the inorganic blocks together in predetermined dimensionality or symmetry are scarce. Here, we describe the synthesis of anisotropic van der Waals crystalline frameworks using the designer superatomic nanocluster Co(py)CoSeL (py = pyridine, L = PhPN(Tol)), and ditopic linkers. Post-synthetically, the 3D crystals can be mechanically exfoliated into ultrathin flakes (8 to 60 nm), or intercalated with the redox-active guest tetracyanoethylene in a single-crystal-to-single-crystal transformation. Extensive characterization, including by single crystal X-ray diffraction, reveals how intrinsic features of the nanocluster, such as its structure, chirality, redox-activity and magnetic profile, predetermine key properties of the emerging 2D structures. Within the nanosheets, the strict and unusual stereoselectivity of the nanocluster's Co edges for the low symmetry (α,α,β) isomer gives rise to in-plane structural anisotropy, while the helically chiral nanoclusters self-organize into alternating Δ- and Λ-homochiral rows. The nanocluster's high-spin Co edges, and its rich redox profile make the nanosheets both magnetically and electrochemically active, as revealed by solid state magnetic and cyclic voltammetry studies. The length and flexibility of the ditopic linker was varied, and found to have a secondary effect on the structure and stacking of the nanosheets within the 3D crystals. With these results we introduce a deterministic and versatile synthetic entry to programmable functionality and symmetry in 2D superatomic crystals.
在二维(2D)极限下调整原子晶体的性质在合成方面具有挑战性,但对于在基础研究和纳米技术中释放其潜力都至关重要。使用超原子块组装的二维晶体可以提供一种加密所需功能的途径,然而,将无机块以预定的维度或对称性连接在一起的策略却很少。在这里,我们描述了使用设计的超原子纳米团簇Co(py)CoSeL(py = 吡啶,L = PhPN(Tol))和双齿连接体合成各向异性范德华晶体框架。合成后,三维晶体可以机械剥离成超薄薄片(8至60纳米),或者在单晶到单晶的转变中与氧化还原活性客体四氰基乙烯插层。广泛的表征,包括通过单晶X射线衍射,揭示了纳米团簇的内在特征,如其结构、手性、氧化还原活性和磁特性,如何预先决定新兴二维结构的关键性质。在纳米片中,纳米团簇的Co边缘对低对称性(α,α,β)异构体的严格且不寻常的立体选择性导致了面内结构各向异性,而螺旋手性纳米团簇自组装成交替的Δ-和Λ-同手性行。固态磁性和循环伏安法研究表明,纳米团簇的高自旋Co边缘及其丰富的氧化还原特性使纳米片具有磁性和电化学活性。双齿连接体的长度和柔韧性是可变的,并且发现其对三维晶体中纳米片的结构和堆积有次要影响。通过这些结果,我们引入了一种确定性和通用的合成方法,用于二维超原子晶体中可编程功能和对称性。