School of Mathematics and Physics, University of Science & Technology Beijing, China.
School of Mathematics and Statistics, Qingdao University, China.
Biomed Res Int. 2021 May 22;2021:9919080. doi: 10.1155/2021/9919080. eCollection 2021.
Advanced single-cell profiling technologies promote exploration of cell heterogeneity, and clustering of single-cell RNA (scRNA-seq) data enables discovery of coexpression genes and network relationships between genes. In particular, single-cell profiling of circulating tumor cells (CTCs) can provide unique insights into tumor heterogeneity (including in triple-negative breast cancer (TNBC)), while scRNA-seq leads to better understanding of subclonal architecture and biological function. Despite numerous reports suggesting a direct correlation between circulating tumor cells (CTCs) and poor clinical outcomes, few studies have provided a thorough heterogeneity characterization of CTCs. In addition, TNBC is a disease with not only intertumor but also intratumor heterogeneity and represents various biological distinct subgroups that may have relationships with immune functions that are not clearly established yet. In this article, we introduce a new scheme for detecting genotypic characterization of single-cell heterogeneities and apply it to CTC and TNBC single-cell RNA-seq data. First, we use an existing mixture exponential family graph model to partition the cell-cell network; then, with the Markov random field model, we obtain more flexible network rewiring. Finally, we find the cell heterogeneity and network relationships according to different high coexpression gene modules in different cell subsets. Our results demonstrate that this scheme provides a reasonable and effective way to model different cell clusters and different biological enrichment gene clusters. Thus, using different internal coexpression genes of different cell clusters, we can infer the differences in tumor composition and diversity.
先进的单细胞分析技术促进了细胞异质性的探索,而单细胞 RNA(scRNA-seq)数据的聚类可以发现共表达基因和基因之间的网络关系。特别是,循环肿瘤细胞(CTC)的单细胞分析可以提供对肿瘤异质性(包括三阴性乳腺癌(TNBC))的独特见解,而 scRNA-seq 则可以更好地了解亚克隆结构和生物学功能。尽管有许多报告表明循环肿瘤细胞(CTC)与不良临床结果之间存在直接关联,但很少有研究对 CTC 的异质性进行全面描述。此外,TNBC 不仅存在肿瘤间异质性,还存在肿瘤内异质性,代表了各种生物学上不同的亚群,这些亚群可能与免疫功能有关,但目前尚未明确。在本文中,我们提出了一种新的方案,用于检测单细胞异质性的基因型特征,并将其应用于 CTC 和 TNBC 的单细胞 RNA-seq 数据。首先,我们使用现有的混合指数家族图模型来划分细胞-细胞网络;然后,通过马尔可夫随机场模型,我们获得了更灵活的网络重连。最后,我们根据不同细胞亚群中不同的高共表达基因模块来寻找细胞异质性和网络关系。我们的结果表明,该方案为不同细胞簇和不同生物富集基因簇的建模提供了合理有效的方法。因此,通过使用不同细胞簇的不同内部共表达基因,我们可以推断出肿瘤组成和多样性的差异。