Suppr超能文献

一项利用电子健康记录进行研究的分布式团队科学案例研究。

A case study in distributed team science in research using electronic health records.

作者信息

Song Jiao, Elliot Elizabeth, Morris Andrew D, Kerssens Joannes J, Akbari Ashley, Ellwood-Thompson Simon, Lyons Ronan A

机构信息

Farr Institute, Swansea University Medical School, Swansea, UK.

Usher Institute of Population Health Sciences and Informatics, University of Edinburgh, Edinburgh, UK.

出版信息

Int J Popul Data Sci. 2018 Sep 21;3(3):442. doi: 10.23889/ijpds.v3i3.442.

Abstract

INTRODUCTION

Due to various regulatory barriers, it is increasingly difficult to move pseudonymised routine health data across platforms and among jurisdictions. To tackle this challenge, we summarized five approaches considered to support a scientific research project focused on the risk of the new non-vitamin K Target Specific Oral Anticoagulants (TSOACs) and collaborated between the Farr institute in Wales and Scotland.

APPROACH

In Wales, routinely collected health records held in the Secure Anonymous Information Linkage (SAIL) Databank were used to identify the study cohort. In Scotland, data was extracted from national dataset resources administered by the eData Research & Innovation Service (eDRIS) and stored in the Scottish National Data Safe Haven. We adopted a federated data and multiple analysts approach, but arranged simultaneous accesses for Welsh and Scottish analysts to generate study cohorts separately by implementing the same algorithm. Our study cohort across two countries was boosted to 6,829 patients towards risk analysis. Source datasets and data types applied to generate cohorts were reviewed and compared by analysts based on both sites to ensure the consistency and harmonised output.

DISCUSSION

This project used a fusion of two approaches among five considered. The approach we adopted is a simple, yet efficient and cost-effective method to ensure consistency in analysis and coherence with multiple governance systems. It has limitations and potentials of extending and scaling. It can also be considered as an initialisation of a developing infrastructure to support a distributed team science approach to research using Electronic Health Records (EHRs) across the UK and more widely.

摘要

引言

由于各种监管障碍,跨平台和跨辖区移动假名化的常规健康数据变得越来越困难。为应对这一挑战,我们总结了五种被认为有助于支持一项专注于新型非维生素K口服抗凝剂(TSOACs)风险的科研项目的方法,并促成了威尔士和苏格兰的法尔研究所之间的合作。

方法

在威尔士,利用安全匿名信息链接(SAIL)数据库中常规收集的健康记录来确定研究队列。在苏格兰,数据从由电子数据研究与创新服务(eDRIS)管理的国家数据集资源中提取,并存储在苏格兰国家数据避风港中。我们采用了联邦数据和多分析师方法,但通过实施相同算法安排威尔士和苏格兰的分析师同时访问,以便分别生成研究队列。我们将两国的研究队列增加到6829名患者以进行风险分析。两个地点的分析师对用于生成队列的源数据集和数据类型进行了审查和比较,以确保输出的一致性和协调性。

讨论

该项目采用了五种考虑方法中的两种方法的融合。我们采用的方法是一种简单、高效且具有成本效益的方法,可确保分析的一致性以及与多个治理系统的连贯性。它有局限性以及扩展和扩大规模的潜力。它也可被视为一种发展中基础设施的初始化,以支持一种分布式团队科学方法,用于在英国及更广泛地区使用电子健康记录(EHRs)进行研究。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/afee/8142956/41b985d57d86/ijpds-03-442-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验