Smaha Rebecca W, Boukahil Idris, Titus Charles J, Jiang Jack Mingde, Sheckelton John P, He Wei, Wen Jiajia, Vinson John, Wang Suyin Grass, Chen Yu-Sheng, Teat Simon J, Devereaux Thomas P, Pemmaraju C Das, Lee Young S
Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA.
Department of Chemistry, Stanford University, Stanford, California 94305, USA.
Phys Rev Mater. 2020;4(12). doi: 10.1103/physrevmaterials.4.124406.
Realizing a quantum spin liquid (QSL) ground state in a real material is a leading issue in condensed matter physics research. In this pursuit, it is crucial to fully characterize the structure and influence of defects, as these can significantly affect the fragile QSL physics. Here, we perform a variety of cutting-edge synchrotron X-ray scattering and spectroscopy techniques, and we advance new methodologies for site-specific diffraction and L-edge Zn absorption spectroscopy. The experimental results along with our first-principles calculations address outstanding questions about the local and long-range structures of the two leading kagome QSL candidates, Zn-substituted barlowite (CuZn Cu (OH)FBr) and herbertsmithite (CuZn(OH)Cl). On all length scales probed, there is no evidence that Zn substitutes onto the kagome layers, thereby preserving the QSL physics of the kagome lattice. Our calculations show that antisite disorder is not energetically favorable and is even less favorable in Zn-barlowite compared to herbertsmithite. Site-specific X-ray diffraction measurements of Zn-barlowite reveal that Cu and Zn selectively occupy distinct interlayer sites, in contrast to herbertsmithite. Using the first measured Zn L-edge inelastic X-ray absorption spectra combined with calculations, we discover a systematic correlation between the loss of inversion symmetry from pseudo-octahedral (herbertsmithite) to trigonal prismatic coordination (Zn-barlowite) with the emergence of a new peak. Overall, our measurements suggest that Zn-barlowite has structural advantages over herbertsmithite that make its magnetic properties closer to an ideal QSL candidate: its kagome layers are highly resistant to nonmagnetic defects while the interlayers can accommodate a higher amount of Zn substitution.
在真实材料中实现量子自旋液体(QSL)基态是凝聚态物理研究中的一个首要问题。在这一探索过程中,全面表征缺陷的结构和影响至关重要,因为这些缺陷会显著影响脆弱的QSL物理特性。在此,我们开展了多种前沿的同步加速器X射线散射和光谱技术研究,并提出了针对特定位置衍射和L边Zn吸收光谱的新方法。实验结果以及我们的第一性原理计算解决了关于两种主要的 kagome QSL候选材料——Zn取代的钡解石(CuZnCu(OH)FBr)和硫铜锌矿(CuZn(OH)Cl)的局部和长程结构的悬而未决的问题。在所有探测的长度尺度上,没有证据表明Zn取代到了kagome层上,从而保留了kagome晶格的QSL物理特性。我们的计算表明,反位无序在能量上是不利的,并且与硫铜锌矿相比,在Zn - 钡解石中更不利。对Zn - 钡解石的特定位置X射线衍射测量表明,与硫铜锌矿不同,Cu和Zn选择性地占据不同的层间位置。通过结合计算使用首次测量的Zn L边非弹性X射线吸收光谱,我们发现随着一个新峰的出现,从假八面体(硫铜锌矿)到三角棱柱配位(Zn - 钡解石)的反演对称性丧失之间存在系统相关性。总体而言,我们的测量表明,Zn - 钡解石比硫铜锌矿具有结构优势,使其磁性能更接近理想的QSL候选材料:其kagome层对非磁性缺陷具有高度抗性,而层间可以容纳更高含量的Zn取代。