Kim Yeongsu, Yun Jonghyeok, Shin Hyun-Seop, Jung Kyu-Nam, Lee Jong-Won
Department of Materials Science and Engineering, Chosun University, 309 Pilmun-daero, Dong- gu, Gwangju, 61452, Republic of Korea.
Department of Energy Science and Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), 333 Techno Jungang-daero, Hyeonpung-eup, Dalseong-gun, Daegu, 42988, Republic of Korea.
Nano Converg. 2021 Jun 7;8(1):17. doi: 10.1186/s40580-021-00268-5.
A rechargeable lithium-oxygen battery (LOB) operates via the electrochemical formation and decomposition of solid-state LiO on the cathode. The rational design of the cathode nanoarchitectures is thus required to realize high-energy-density and long-cycling LOBs. Here, we propose a cathode nanoarchitecture for LOBs, which is composed of mesoporous carbon (MPC) integrated with carbon nanotubes (CNTs). The proposed design has the advantages of the two components. MPC provides sufficient active sites for the electrochemical reactions and free space for LiO storage, while CNT forests serve as conductive pathways for electron and offer additional reaction sites. Results show that the synergistic architecture of MPC and CNTs leads to improvements in the capacity (~ 18,400 mAh g), rate capability, and cyclability (~ 200 cycles) of the CNT-integrated MPC cathode in comparison with MPC.
可充电锂氧电池(LOB)通过在阴极上电化学形成和分解固态LiO来运行。因此,需要对阴极纳米结构进行合理设计,以实现高能量密度和长循环寿命的LOB。在此,我们提出了一种用于LOB的阴极纳米结构,它由与碳纳米管(CNT)集成的介孔碳(MPC)组成。所提出的设计具有这两种组分的优点。MPC为电化学反应提供了足够的活性位点和LiO存储的自由空间,而碳纳米管森林则作为电子的传导途径并提供额外的反应位点。结果表明,与MPC相比,MPC和CNT的协同结构使集成CNT的MPC阴极的容量(18400 mAh g)、倍率性能和循环稳定性(200次循环)得到了改善。