Martirez John Mark P, Carter Emily A
Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, New Jersey 08544, United States.
J Chem Theory Comput. 2021 Jul 13;17(7):4105-4121. doi: 10.1021/acs.jctc.1c00285. Epub 2021 Jun 7.
Quantum-mechanics-(QM)-based simulations now routinely aid in understanding and even discovering new chemistries involving molecules and materials exhibiting desired functionalities. correlated wavefunction (CW) theories systematically improve QM methods, with many exhibiting high accuracy. However, execution of CW methods requires expensive computations that typically scale poorly with system size. Divide-and-conquer approaches partition large systems into smaller fragments; a lower level of theory treats fragment interactions while a preferred higher level of theory describes the important fragment. These methods offer ways to incorporate CWs into chemical simulations of large systems, e.g., biomolecules, surfaces, large inorganic clusters, bulk crystals, etc. Here we propose a partitioning protocol that utilizes capping atoms to saturate severed covalent bonds at fragment interfaces and density functional embedding theory (DFET) to describe fragment interactions. The capping groups in each fragment provide an potential that approximates the effects of the environment. An embedding potential optimized via DFET then serves as an augmentation of the capping group to simulate the effects of the environment. We concurrently use an auxiliary fragment (a separate system comprised of only the combined capping groups) to account for, and thereby correct, the electron density contributions of all the capping groups added to all of the fragments. This method depends only on the capped-subsystem and auxiliary-fragment electron densities, forgoing, as with the original DFET developed for metallic systems, orbital-based projector approaches that determine a nonlocal action of the embedding potential onto the fragment electrons. By using an auxiliary fragment, the method maintains a purely electron-density-dependent embedding potential, substantially lessening the cost and leading to simpler implementation. Here, we demonstrate the utility of our capped-DFET and ensuing capped embedded CW method in two contrasting systems, namely, an organic molecule and an ionic metal oxide cluster.
基于量子力学(QM)的模拟如今已常规性地助力理解甚至发现涉及展现所需功能的分子和材料的新化学性质。相关波函数(CW)理论系统性地改进了量子力学方法,其中许多方法具有高精度。然而,执行CW方法需要昂贵的计算,且计算量通常随系统规模增大而急剧增加。分治方法将大系统划分为更小的片段;较低层次的理论处理片段间的相互作用,而更优的较高层次理论描述重要的片段。这些方法提供了将CW纳入大系统化学模拟的途径,例如生物分子、表面、大型无机簇、块状晶体等。在此,我们提出一种划分协议,该协议利用封端原子使片段界面处切断的共价键饱和,并使用密度泛函嵌入理论(DFET)来描述片段间的相互作用。每个片段中的封端基团提供一种势,该势近似环境的影响。通过DFET优化的嵌入势随后用作封端基团的增强,以模拟环境的影响。我们同时使用一个辅助片段(一个仅由组合封端基团组成的单独系统)来考虑并校正添加到所有片段的所有封端基团的电子密度贡献。该方法仅依赖于封端子系统和辅助片段的电子密度,如同为金属系统开发的原始DFET一样,摒弃了基于轨道的投影方法,该方法确定嵌入势对片段电子的非局部作用。通过使用辅助片段,该方法保持了纯粹依赖电子密度的嵌入势,大幅降低了成本并简化了实现过程。在此,我们在两个截然不同的系统中展示了我们的封端DFET及后续的封端嵌入CW方法的实用性,即一个有机分子和一个离子金属氧化物簇。