Suppr超能文献

2-氨基嘧啶核苷碱基在肽核酸中替代假异胞嘧啶时改善 RNA 和 DNA 的三螺旋识别。

The 2-Aminopyridine Nucleobase Improves Triple-Helical Recognition of RNA and DNA When Used Instead of Pseudoisocytosine in Peptide Nucleic Acids.

机构信息

Department of Chemistry, Binghamton University, The State University of New York, Binghamton, New York 13902, United States.

出版信息

Biochemistry. 2021 Jun 22;60(24):1919-1925. doi: 10.1021/acs.biochem.1c00275. Epub 2021 Jun 7.

Abstract

Pseudoisocytosine (J), a neutral analogue of protonated cytosine, is currently the gold standard modified nucleobase in peptide nucleic acids (PNAs) for the formation of J·G-C triplets that are stable at physiological pH. This study shows that triple-helical recognition of RNA and DNA is significantly improved by using 2-aminopyridine (M) instead of J. The positively charged M forms 3-fold stronger M+·G-C triplets than J with uncompromised sequence selectivity. Replacement of six Js with Ms in a PNA 9-mer increased its binding affinity by ∼2 orders of magnitude. M-modified PNAs prefer binding double-stranded RNA over DNA and disfavor off-target binding to single-stranded nucleic acids. Taken together, the results show that M is a promising modified nucleobase that significantly improves triplex-forming PNAs and may provide breakthrough developments for therapeutic and biotechnology applications.

摘要

假胞嘧啶(J)是质子化胞嘧啶的中性类似物,目前是肽核酸(PNA)中形成在生理 pH 下稳定的 J·G-C 三联体的金标准修饰碱基。本研究表明,使用 2-氨基吡啶(M)代替 J 可显著提高 RNA 和 DNA 的三螺旋识别。带正电荷的 M 形成的 M+·G-C 三联体比 J 强 3 倍,且序列选择性没有降低。在一个 9 个碱基的 PNA 中用 M 替代 6 个 J,其结合亲和力提高了约 2 个数量级。M 修饰的 PNA 优先与双链 RNA 结合,而不与单链核酸结合。总之,结果表明 M 是一种很有前途的修饰碱基,可显著改善三聚体形成的 PNA,并可能为治疗和生物技术应用提供突破性进展。

相似文献

2
Incorporation of thio-pseudoisocytosine into triplex-forming peptide nucleic acids for enhanced recognition of RNA duplexes.
Nucleic Acids Res. 2014 Apr;42(6):4008-18. doi: 10.1093/nar/gkt1367. Epub 2014 Jan 13.
4
Synthetic, Structural, and RNA Binding Studies on 2-Aminopyridine-Modified Triplex-Forming Peptide Nucleic Acids.
Chemistry. 2019 Mar 21;25(17):4367-4372. doi: 10.1002/chem.201806293. Epub 2019 Mar 4.
5
Triple-helical recognition of RNA using 2-aminopyridine-modified PNA at physiologically relevant conditions.
Angew Chem Int Ed Engl. 2012 Dec 7;51(50):12593-6. doi: 10.1002/anie.201207925. Epub 2012 Nov 4.
6
Fluorescent 2-Aminopyridine Nucleobases for Triplex-Forming Peptide Nucleic Acids.
Chembiochem. 2016 Aug 17;17(16):1558-62. doi: 10.1002/cbic.201600182. Epub 2016 Jun 30.
7
Pyridazine Nucleobase in Triplex-Forming PNA Improves Recognition of Cytosine Interruptions of Polypurine Tracts in RNA.
ACS Chem Biol. 2021 May 21;16(5):872-881. doi: 10.1021/acschembio.1c00044. Epub 2021 Apr 21.
8
2-Guanidyl pyridine PNA nucleobase for triple-helical Hoogsteen recognition of cytosine in double-stranded RNA.
Chem Commun (Camb). 2022 Jun 23;58(51):7148-7151. doi: 10.1039/d2cc02615e.
9
General Recognition of U-G, U-A, and C-G Pairs by Double-Stranded RNA-Binding PNAs Incorporated with an Artificial Nucleobase.
Biochemistry. 2019 Mar 12;58(10):1319-1331. doi: 10.1021/acs.biochem.8b01313. Epub 2019 Mar 1.

引用本文的文献

1
Enhancing RNA inhibitory activity using clamp-G-modified nucleobases.
Cell Rep Phys Sci. 2024 Aug 21;5(8). doi: 10.1016/j.xcrp.2024.102120. Epub 2024 Jul 29.
2
Peptide nucleic acids (PNAs) control function of SARS-CoV-2 frameshifting stimulatory element trough PNA-RNA-PNA triplex formation.
Heliyon. 2024 Jun 29;10(13):e33914. doi: 10.1016/j.heliyon.2024.e33914. eCollection 2024 Jul 15.
3
Comparison of 2-Aminopyridine and 4-Thiopseudisocytosine PNA Nucleobases for Hoogsteen Recognition of Guanosine in RNA.
ACS Omega. 2024 Feb 3;9(6):7249-7254. doi: 10.1021/acsomega.3c09775. eCollection 2024 Feb 13.
4
Triplex-forming peptide nucleic acids as emerging ligands to modulate structure and function of complex RNAs.
Chem Commun (Camb). 2024 Feb 15;60(15):1999-2008. doi: 10.1039/d3cc05409h.
6
TFOFinder: Python program for identifying purine-only double-stranded stretches in the predicted secondary structure(s) of RNA targets.
PLoS Comput Biol. 2023 Aug 25;19(8):e1011418. doi: 10.1371/journal.pcbi.1011418. eCollection 2023 Aug.
7
Triplex-Forming Peptide Nucleic Acid Controls Dynamic Conformations of RNA Bulges.
J Am Chem Soc. 2023 May 17;145(19):10497-10504. doi: 10.1021/jacs.2c12488. Epub 2023 May 8.
8
Cellular uptake of 2-aminopyridine-modified peptide nucleic acids conjugated with cell-penetrating peptides.
Biopolymers. 2022 Apr;113(4):e23484. doi: 10.1002/bip.23484. Epub 2021 Dec 16.
9
Fluorobenzene Nucleobase Analogues for Triplex-Forming Peptide Nucleic Acids.
Chembiochem. 2022 Feb 4;23(3):e202100560. doi: 10.1002/cbic.202100560. Epub 2021 Dec 20.
10
Chemical approaches to discover the full potential of peptide nucleic acids in biomedical applications.
Beilstein J Org Chem. 2021 Jul 19;17:1641-1688. doi: 10.3762/bjoc.17.116. eCollection 2021.

本文引用的文献

1
Triple-Helical Binding of Peptide Nucleic Acid Inhibits Maturation of Endogenous MicroRNA-197.
ACS Chem Biol. 2021 Jul 16;16(7):1147-1151. doi: 10.1021/acschembio.1c00133. Epub 2021 Jun 11.
2
Impact of Chirality and Position of Lysine Conjugation in Triplex-Forming Peptide Nucleic Acids.
ACS Omega. 2020 Oct 28;5(44):28722-28729. doi: 10.1021/acsomega.0c04021. eCollection 2020 Nov 10.
3
Advances in oligonucleotide drug delivery.
Nat Rev Drug Discov. 2020 Oct;19(10):673-694. doi: 10.1038/s41573-020-0075-7. Epub 2020 Aug 11.
5
Peptide nucleic acid (PNA) and its applications in chemical biology, diagnostics, and therapeutics.
Curr Opin Chem Biol. 2019 Oct;52:112-124. doi: 10.1016/j.cbpa.2019.06.006. Epub 2019 Sep 18.
6
Incorporating G-C Pair-Recognizing Guanidinium into PNAs for Sequence and Structure Specific Recognition of dsRNAs over dsDNAs and ssRNAs.
Biochemistry. 2019 Sep 10;58(36):3777-3788. doi: 10.1021/acs.biochem.9b00608. Epub 2019 Aug 28.
7
The current state and future directions of RNAi-based therapeutics.
Nat Rev Drug Discov. 2019 Jun;18(6):421-446. doi: 10.1038/s41573-019-0017-4.
8
Synthetic, Structural, and RNA Binding Studies on 2-Aminopyridine-Modified Triplex-Forming Peptide Nucleic Acids.
Chemistry. 2019 Mar 21;25(17):4367-4372. doi: 10.1002/chem.201806293. Epub 2019 Mar 4.
9
Role of Pseudoisocytidine Tautomerization in Triplex-Forming Oligonucleotides: In Silico and in Vitro Studies.
ACS Omega. 2017 May 31;2(5):2165-2177. doi: 10.1021/acsomega.7b00347. Epub 2017 May 17.
10
Chemistry, mechanism and clinical status of antisense oligonucleotides and duplex RNAs.
Nucleic Acids Res. 2018 Feb 28;46(4):1584-1600. doi: 10.1093/nar/gkx1239.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验