Suppr超能文献

用于光催化水分解的染料-催化剂-染料超分子复合物中电子转移的双通道模型。

Two-Channel Model for Electron Transfer in a Dye-Catalyst-Dye Supramolecular Complex for Photocatalytic Water Splitting.

机构信息

Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2300 RA, Leiden, The Netherlands.

出版信息

ChemSusChem. 2021 Aug 9;14(15):3155-3162. doi: 10.1002/cssc.202100846. Epub 2021 Jun 25.

Abstract

To improve the performance of dye-sensitized photoelectrochemical cell (DS-PEC) devices for splitting water, the tailoring of the photocatalytic four-photon water oxidation half-reaction represents a principle challenge of fundamental significance. In this study, a Ru-based water oxidation catalyst (WOC) covalently bound to two 2,6-diethoxy-1,4,5,8-diimide-naphthalene (NDI) dye functionalities provides comparable driving forces and channels for electron transfer. Constrained ab initio molecular dynamics simulations are performed to investigate the photocatalytic cycle of this two-channel model for photocatalytic water splitting. The introduction of a second light-harvesting dye in the Ru-based dye-WOC-dye supramolecular complex enables two separate parallel electron-transfer channels, leading to a five-step catalytic cycle with three intermediates and two doubly oxidized states. The total spin S=1 is conserved during the catalytic process and the system with opposite spin on the oxidized NDI proceeds from the Ru=O intermediate to the final Ru-O intermediate with a triplet molecular O ligand that is eventually released into the environment. The in-depth insight into the proposed photocatalytic cycle of the two-channel model provides a strategy for the development of novel high-efficiency supramolecular complexes for DS-PEC devices with buildup and conservation of spin multiplicity along the reaction coordinate as a design principle.

摘要

为了提高染料敏化光电化学电池 (DS-PEC) 分解水的性能,对光催化四光子水氧化半反应的调整代表了具有重要意义的基本挑战。在这项研究中,通过将两个 2,6-二乙氧基-1,4,5,8-二酰亚胺-萘 (NDI) 染料官能团共价键合到基于 Ru 的水氧化催化剂 (WOC) 上,提供了可比的驱动力和电子转移通道。进行了约束从头算分子动力学模拟,以研究光催化水分解的这种双通道模型的光催化循环。在基于 Ru 的染料-WOC-染料超分子复合物中引入第二个光收集染料,可实现两个独立的平行电子转移通道,从而形成具有三个中间体和两个双氧化态的五步催化循环。在催化过程中,总自旋 S=1 保持不变,并且在氧化的 NDI 上具有相反自旋的系统从 Ru=O 中间体到最终的 Ru-O 中间体进行,其中三重态分子 O 配体最终释放到环境中。对双通道模型的拟议光催化循环的深入了解为开发新型高效的基于超分子复合物的 DS-PEC 器件提供了一种策略,该策略的设计原则是沿反应坐标构建和保持自旋多重性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/77bf/8453919/e6fb5524d4ab/CSSC-14-3155-g004.jpg

相似文献

1
Two-Channel Model for Electron Transfer in a Dye-Catalyst-Dye Supramolecular Complex for Photocatalytic Water Splitting.
ChemSusChem. 2021 Aug 9;14(15):3155-3162. doi: 10.1002/cssc.202100846. Epub 2021 Jun 25.
3
Photocatalytic Systems for CO Reduction: Metal-Complex Photocatalysts and Their Hybrids with Photofunctional Solid Materials.
Acc Chem Res. 2022 Apr 5;55(7):978-990. doi: 10.1021/acs.accounts.1c00705. Epub 2022 Mar 7.
4
Making oxygen with ruthenium complexes.
Acc Chem Res. 2009 Dec 21;42(12):1954-65. doi: 10.1021/ar9001526.
5
Proton Acceptor near the Active Site Lowers Dramatically the O-O Bond Formation Energy Barrier in Photocatalytic Water Splitting.
J Phys Chem Lett. 2019 Dec 19;10(24):7690-7697. doi: 10.1021/acs.jpclett.9b02914. Epub 2019 Dec 2.
6
Dye-catalyst dyads for photoelectrochemical water oxidation based on metal-free sensitizers.
RSC Adv. 2021 Jan 28;11(10):5311-5319. doi: 10.1039/d0ra10971a.
7
Visible light water splitting using dye-sensitized oxide semiconductors.
Acc Chem Res. 2009 Dec 21;42(12):1966-73. doi: 10.1021/ar9002398.
8
Improving the efficiency of water splitting in dye-sensitized solar cells by using a biomimetic electron transfer mediator.
Proc Natl Acad Sci U S A. 2012 Sep 25;109(39):15612-6. doi: 10.1073/pnas.1118339109. Epub 2012 Apr 30.
9
[NiFeSe]-hydrogenase chemistry.
Acc Chem Res. 2015 Nov 17;48(11):2858-65. doi: 10.1021/acs.accounts.5b00326. Epub 2015 Oct 21.
10
Water splitting with polyoxometalate-treated photoanodes: enhancing performance through sensitizer design.
Chem Sci. 2015 Oct 1;6(10):5531-5543. doi: 10.1039/c5sc01439e. Epub 2015 Jun 11.

引用本文的文献

本文引用的文献

2
Systematic Computational Design and Optimization of Light Absorbing Dyes.
J Phys Chem A. 2020 Aug 6;124(31):6380-6388. doi: 10.1021/acs.jpca.0c04506. Epub 2020 Jul 24.
3
Zooming in on the O-O Bond Formation-An Ab Initio Molecular Dynamics Study Applying Enhanced Sampling Techniques.
J Chem Theory Comput. 2020 Apr 14;16(4):2436-2449. doi: 10.1021/acs.jctc.9b01207. Epub 2020 Mar 24.
4
Proton Acceptor near the Active Site Lowers Dramatically the O-O Bond Formation Energy Barrier in Photocatalytic Water Splitting.
J Phys Chem Lett. 2019 Dec 19;10(24):7690-7697. doi: 10.1021/acs.jpclett.9b02914. Epub 2019 Dec 2.
5
Dye sensitized photoelectrolysis cells.
Chem Soc Rev. 2019 Jul 15;48(14):3705-3722. doi: 10.1039/c8cs00987b.
6
Recent Advances in the Development of Molecular Catalyst-Based Anodes for Water Oxidation toward Artificial Photosynthesis.
ChemSusChem. 2019 May 8;12(9):1775-1793. doi: 10.1002/cssc.201802795. Epub 2019 Apr 18.
7
Stabilized photoanodes for water oxidation by integration of organic dyes, water oxidation catalysts, and electron-transfer mediators.
Proc Natl Acad Sci U S A. 2018 Aug 21;115(34):8523-8528. doi: 10.1073/pnas.1802903115. Epub 2018 Aug 6.
8
Dye-sensitized photoelectrochemical water oxidation through a buried junction.
Proc Natl Acad Sci U S A. 2018 Jul 3;115(27):6946-6951. doi: 10.1073/pnas.1804728115. Epub 2018 Jun 18.
10
Finding the Way to Solar Fuels with Dye-Sensitized Photoelectrosynthesis Cells.
J Am Chem Soc. 2016 Oct 12;138(40):13085-13102. doi: 10.1021/jacs.6b06466. Epub 2016 Oct 3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验