Department of Chemistry, The Pennsylvania State University, University Park, PA 16802.
Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802.
Proc Natl Acad Sci U S A. 2018 Jul 3;115(27):6946-6951. doi: 10.1073/pnas.1804728115. Epub 2018 Jun 18.
Water oxidation has long been a challenge in artificial photosynthetic devices that convert solar energy into fuels. Water-splitting dye-sensitized photoelectrochemical cells (WS-DSPECs) provide a modular approach for integrating light-harvesting molecules with water-oxidation catalysts on metal-oxide electrodes. Despite recent progress in improving the efficiency of these devices by introducing good molecular water-oxidation catalysts, WS-DSPECs have poor stability, owing to the oxidation of molecular components at very positive electrode potentials. Here we demonstrate that a solid-state dye-sensitized solar cell (ss-DSSC) can be used as a buried junction for stable photoelectrochemical water splitting. A thin protecting layer of TiO grown by atomic layer deposition (ALD) stabilizes the operation of the photoanode in aqueous solution, although as a solar cell there is a performance loss due to increased series resistance after the coating. With an electrodeposited iridium oxide layer, a photocurrent density of 1.43 mA cm was observed in 0.1 M pH 6.7 phosphate solution at 1.23 V versus reversible hydrogen electrode, with good stability over 1 h. We measured an incident photon-to-current efficiency of 22% at 540 nm and a Faradaic efficiency of 43% for oxygen evolution. While the potential profile of the catalyst layer suggested otherwise, we confirmed the formation of a buried junction in the as-prepared photoelectrode. The buried junction design of ss-DSSs adds to our understanding of semiconductor-electrocatalyst junction behaviors in the presence of a poor semiconducting material.
水氧化一直是人工光合作用装置的一个挑战,这些装置将太阳能转化为燃料。水分解染料敏化光电化学电池 (WS-DSPECs) 为在金属氧化物电极上集成光捕获分子和水氧化催化剂提供了一种模块化方法。尽管通过引入良好的分子水氧化催化剂来提高这些器件的效率方面取得了最近的进展,但 WS-DSPECs 的稳定性较差,这是由于在非常正的电极电位下分子组件的氧化。在这里,我们证明固态染料敏化太阳能电池 (ss-DSSC) 可用作稳定光电化学水分解的埋入结。原子层沉积 (ALD) 生长的 TiO 薄保护层稳定了光电阳极在水溶液中的工作,尽管作为太阳能电池,由于涂层后的串联电阻增加,性能会有所损失。用电沉积氧化铱层,在 0.1 M pH 6.7 磷酸盐溶液中在 1.23 V 对可逆氢电极观察到 1.43 mA cm 的光电流密度,在 1 小时以上具有良好的稳定性。我们在 540 nm 处测量到 22%的入射光子到电流效率和 43%的氧气演化的法拉第效率。虽然催化剂层的电位分布表明情况并非如此,但我们确认在制备好的光电电极中形成了埋入结。ss-DSSs 的埋入结设计增加了我们对在不良半导体材料存在下半导体-电催化剂结行为的理解。