Suppr超能文献

通过埋层结实现染料敏化光电化学水氧化。

Dye-sensitized photoelectrochemical water oxidation through a buried junction.

机构信息

Department of Chemistry, The Pennsylvania State University, University Park, PA 16802.

Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802.

出版信息

Proc Natl Acad Sci U S A. 2018 Jul 3;115(27):6946-6951. doi: 10.1073/pnas.1804728115. Epub 2018 Jun 18.

Abstract

Water oxidation has long been a challenge in artificial photosynthetic devices that convert solar energy into fuels. Water-splitting dye-sensitized photoelectrochemical cells (WS-DSPECs) provide a modular approach for integrating light-harvesting molecules with water-oxidation catalysts on metal-oxide electrodes. Despite recent progress in improving the efficiency of these devices by introducing good molecular water-oxidation catalysts, WS-DSPECs have poor stability, owing to the oxidation of molecular components at very positive electrode potentials. Here we demonstrate that a solid-state dye-sensitized solar cell (ss-DSSC) can be used as a buried junction for stable photoelectrochemical water splitting. A thin protecting layer of TiO grown by atomic layer deposition (ALD) stabilizes the operation of the photoanode in aqueous solution, although as a solar cell there is a performance loss due to increased series resistance after the coating. With an electrodeposited iridium oxide layer, a photocurrent density of 1.43 mA cm was observed in 0.1 M pH 6.7 phosphate solution at 1.23 V versus reversible hydrogen electrode, with good stability over 1 h. We measured an incident photon-to-current efficiency of 22% at 540 nm and a Faradaic efficiency of 43% for oxygen evolution. While the potential profile of the catalyst layer suggested otherwise, we confirmed the formation of a buried junction in the as-prepared photoelectrode. The buried junction design of ss-DSSs adds to our understanding of semiconductor-electrocatalyst junction behaviors in the presence of a poor semiconducting material.

摘要

水氧化一直是人工光合作用装置的一个挑战,这些装置将太阳能转化为燃料。水分解染料敏化光电化学电池 (WS-DSPECs) 为在金属氧化物电极上集成光捕获分子和水氧化催化剂提供了一种模块化方法。尽管通过引入良好的分子水氧化催化剂来提高这些器件的效率方面取得了最近的进展,但 WS-DSPECs 的稳定性较差,这是由于在非常正的电极电位下分子组件的氧化。在这里,我们证明固态染料敏化太阳能电池 (ss-DSSC) 可用作稳定光电化学水分解的埋入结。原子层沉积 (ALD) 生长的 TiO 薄保护层稳定了光电阳极在水溶液中的工作,尽管作为太阳能电池,由于涂层后的串联电阻增加,性能会有所损失。用电沉积氧化铱层,在 0.1 M pH 6.7 磷酸盐溶液中在 1.23 V 对可逆氢电极观察到 1.43 mA cm 的光电流密度,在 1 小时以上具有良好的稳定性。我们在 540 nm 处测量到 22%的入射光子到电流效率和 43%的氧气演化的法拉第效率。虽然催化剂层的电位分布表明情况并非如此,但我们确认在制备好的光电电极中形成了埋入结。ss-DSSs 的埋入结设计增加了我们对在不良半导体材料存在下半导体-电催化剂结行为的理解。

相似文献

1
Dye-sensitized photoelectrochemical water oxidation through a buried junction.通过埋层结实现染料敏化光电化学水氧化。
Proc Natl Acad Sci U S A. 2018 Jul 3;115(27):6946-6951. doi: 10.1073/pnas.1804728115. Epub 2018 Jun 18.
5
Plasmon-enhanced light-driven water oxidation by a dye-sensitized photoanode.染料敏化光阳极促进的等离子体增强光驱动水氧化。
Proc Natl Acad Sci U S A. 2017 Sep 12;114(37):9809-9813. doi: 10.1073/pnas.1708336114. Epub 2017 Aug 28.

引用本文的文献

1
Chemistry of Materials Underpinning Photoelectrochemical Solar Fuel Production.支撑光电化学太阳能燃料生产的材料化学
Chem Rev. 2025 May 28;125(10):4768-4839. doi: 10.1021/acs.chemrev.4c00258. Epub 2025 May 6.
3
Dye-sensitized solar cells strike back.染料敏化太阳能电池卷土重来。
Chem Soc Rev. 2021 Nov 15;50(22):12450-12550. doi: 10.1039/d0cs01336f.
5
A conductive metal-organic framework photoanode.一种导电金属有机骨架光阳极。
Chem Sci. 2020 Aug 27;11(35):9593-9603. doi: 10.1039/d0sc04302h.
8
Excitation energy-dependent photocurrent switching in a single-molecule photodiode.在单分子光电二极管中,基于激发能量的光电流开关。
Proc Natl Acad Sci U S A. 2019 Aug 13;116(33):16198-16203. doi: 10.1073/pnas.1907118116. Epub 2019 Jul 31.

本文引用的文献

2
Water Photo-oxidation Initiated by Surface-Bound Organic Chromophores.表面结合有机发色团引发的水光氧化。
J Am Chem Soc. 2017 Nov 15;139(45):16248-16255. doi: 10.1021/jacs.7b08317. Epub 2017 Oct 31.
9
Flat-Band Potentials of Molecularly Thin Metal Oxide Nanosheets.分子薄金属氧化物纳米片的扁平带势
ACS Appl Mater Interfaces. 2016 May 11;8(18):11539-47. doi: 10.1021/acsami.6b02901. Epub 2016 May 2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验