Epidemiol Rev. 2022 Jan 14;43(1):130-146. doi: 10.1093/epirev/mxab002.
In many perinatal pharmacoepidemiologic studies, exposure to a medication is classified as "ever exposed" versus "never exposed" within each trimester or even over the entire pregnancy. This approach is often far from real-world exposure patterns, may lead to exposure misclassification, and does not to incorporate important aspects such as dosage, timing of exposure, and treatment duration. Alternative exposure modeling methods can better summarize complex, individual-level medication use trajectories or time-varying exposures from information on medication dosage, gestational timing of use, and frequency of use. We provide an overview of commonly used methods for more refined definitions of real-world exposure to medication use during pregnancy, focusing on the major strengths and limitations of the techniques, including the potential for method-specific biases. Unsupervised clustering methods, including k-means clustering, group-based trajectory models, and hierarchical cluster analysis, are of interest because they enable visual examination of medication use trajectories over time in pregnancy and complex individual-level exposures, as well as providing insight into comedication and drug-switching patterns. Analytical techniques for time-varying exposure methods, such as extended Cox models and Robins' generalized methods, are useful tools when medication exposure is not static during pregnancy. We propose that where appropriate, combining unsupervised clustering techniques with causal modeling approaches may be a powerful approach to understanding medication safety in pregnancy, and this framework can also be applied in other areas of epidemiology.
在许多围产期药物流行病学研究中,药物暴露在每个三个月期间或整个怀孕期间被分类为“曾经暴露”与“从未暴露”。这种方法往往远离现实世界的暴露模式,可能导致暴露错误分类,并且没有纳入重要方面,如剂量、暴露时间和治疗持续时间。替代暴露建模方法可以更好地总结复杂的个体药物使用轨迹或随时间变化的暴露情况,这些信息包括药物剂量、使用的妊娠时间和使用频率。我们提供了一种常用方法的概述,以更精细地定义怀孕期间药物使用的真实世界暴露情况,重点介绍了这些技术的主要优势和局限性,包括特定方法的偏差的可能性。无监督聚类方法,包括 K 均值聚类、基于群组的轨迹模型和层次聚类分析,很有意义,因为它们能够直观地检查怀孕期间药物使用轨迹和复杂的个体水平暴露情况,并提供有关合并用药和药物转换模式的见解。对于随时间变化的暴露方法的分析技术,如扩展 Cox 模型和罗宾斯广义方法,在怀孕期间药物暴露不是静态时,这些是有用的工具。我们建议,在适当的情况下,将无监督聚类技术与因果建模方法相结合,可能是理解妊娠期间药物安全性的有力方法,并且该框架也可以应用于流行病学的其他领域。