Suppr超能文献

SynSig2Vec:基于西格玛对数正态分布合成和一维卷积神经网络的动态签名表示无伪造学习

SynSig2Vec: Forgery-Free Learning of Dynamic Signature Representations by Sigma Lognormal-Based Synthesis and 1D CNN.

作者信息

Lai Songxuan, Jin Lianwen, Zhu Yecheng, Li Zhe, Lin Luojun

出版信息

IEEE Trans Pattern Anal Mach Intell. 2022 Oct;44(10):6472-6485. doi: 10.1109/TPAMI.2021.3087619. Epub 2022 Sep 14.

Abstract

Handwritten signature verification is a challenging task because signatures of a writer may be skillfully imitated by a forger. As skilled forgeries are generally difficult to acquire for training, in this paper, we propose a deep learning-based dynamic signature verification framework, SynSig2Vec, to address the skilled forgery attack without training with any skilled forgeries. Specifically, SynSig2Vec consists of a novel learning-by-synthesis method for training and a 1D convolutional neural network model, called Sig2Vec, for signature representation extraction. The learning-by-synthesis method first applies the Sigma Lognormal model to synthesize signatures with different distortion levels for genuine template signatures, and then learns to rank these synthesized samples in a learnable representation space based on average precision optimization. The representation space is achieved by the proposed Sig2Vec model, which is designed to extract fixed-length representations from dynamic signatures of arbitrary lengths. Through this training method, the Sig2Vec model can extract extremely effective signature representations for verification. Our SynSig2Vec framework requires only genuine signatures for training, yet achieves state-of-the-art performance on the largest dynamic signature database to date, DeepSignDB, in both skilled forgery and random forgery scenarios. Source codes of SynSig2Vec will be available at https://github.com/LaiSongxuan/SynSig2Vec.

摘要

手写签名验证是一项具有挑战性的任务,因为伪造者可能会巧妙地模仿书写者的签名。由于通常很难获取熟练伪造的签名用于训练,在本文中,我们提出了一种基于深度学习的动态签名验证框架SynSig2Vec,以应对熟练伪造攻击,且无需使用任何熟练伪造的签名进行训练。具体而言,SynSig2Vec由一种新颖的合成学习训练方法和一个用于提取签名表示的一维卷积神经网络模型Sig2Vec组成。合成学习方法首先应用西格玛对数正态模型为真实模板签名合成具有不同失真水平的签名,然后基于平均精度优化在可学习的表示空间中对这些合成样本进行排序。该表示空间由所提出的Sig2Vec模型实现,该模型旨在从任意长度的动态签名中提取固定长度的表示。通过这种训练方法,Sig2Vec模型可以提取极其有效的签名表示用于验证。我们的SynSig2Vec框架仅需要真实签名进行训练,但在迄今为止最大的动态签名数据库DeepSignDB上,在熟练伪造和随机伪造场景中均取得了领先的性能。SynSig2Vec的源代码将在https://github.com/LaiSongxuan/SynSig2Vec上提供。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验