Suppr超能文献

流变学信息神经网络(RhINNs)在复杂流体正向和反向建模仿真中的应用。

Rheology-Informed Neural Networks (RhINNs) for forward and inverse metamodelling of complex fluids.

机构信息

Department of Mechanical and Industrial Engineering, Northeastern University, Boston, MA, 02115, USA.

出版信息

Sci Rep. 2021 Jun 8;11(1):12015. doi: 10.1038/s41598-021-91518-3.

Abstract

Reliable and accurate prediction of complex fluids' response under flow is of great interest across many disciplines, from biological systems to virtually all soft materials. The challenge is to solve non-trivial time and rate dependent constitutive equations to describe these structured fluids under various flow protocols. We present Rheology-Informed Neural Networks (RhINNs) for solving systems of Ordinary Differential Equations (ODEs) adopted for complex fluids. The proposed RhINNs are employed to solve the constitutive models with multiple ODEs by benefiting from Automatic Differentiation in neural networks. In a direct solution, the RhINNs platform accurately predicts the fully resolved solution of constitutive equations for a Thixotropic-Elasto-Visco-Plastic (TEVP) complex fluid for a series of flow protocols. From a practical perspective, an exhaustive list of experiments are required to identify model parameters for a multi-variant constitutive TEVP model. RhINNs are found to learn these non-trivial model parameters for a complex material using a single flow protocol, enabling accurate modeling with limited number of experiments and at an unprecedented rate. We also show the RhINNs are not limited to a specific model and can be extended to include various models and recover complex manifestations of kinematic heterogeneities and transient shear banding of thixotropic fluids.

摘要

可靠而准确地预测复杂流体在流动下的响应是许多学科的重要关注点,从生物系统到几乎所有的软物质。挑战在于解决非平凡的时变和率相关本构方程,以描述各种流动方案下的这些结构流体。我们提出了用于解决复杂流体的常微分方程(ODE)系统的流变学神经网络(RhINNs)。所提出的 RhINNs 通过神经网络中的自动微分来解决具有多个 ODE 的本构模型。在直接求解中,RhINNs 平台准确地预测了一系列流动方案下触变弹性粘塑性(TEVP)复杂流体本构方程的全分辨率解。从实际的角度来看,需要进行大量的实验来确定多变量触变 TEVP 模型的模型参数。RhINNs 被发现可以使用单个流动方案来学习复杂材料的这些非平凡模型参数,从而能够以有限的实验数量和前所未有的速度进行准确的建模。我们还表明,RhINNs 不仅限于特定的模型,还可以扩展到包括各种模型,并恢复触变流体的运动学非均匀性和瞬态剪切带的复杂表现。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5427/8187644/fd9cb84e1f09/41598_2021_91518_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验