Suppr超能文献

自缩放双曲正切函数(斯坦):物理驱动神经网络的多尺度解决方案

Self-Scalable Tanh (Stan): Multi-Scale Solutions for Physics-Informed Neural Networks.

作者信息

Gnanasambandam Raghav, Shen Bo, Chung Jihoon, Yue Xubo, Kong Zhenyu

出版信息

IEEE Trans Pattern Anal Mach Intell. 2023 Dec;45(12):15588-15603. doi: 10.1109/TPAMI.2023.3307688. Epub 2023 Nov 3.

Abstract

Differential equations are fundamental in modeling numerous physical systems, including thermal, manufacturing, and meteorological systems. Traditionally, numerical methods often approximate the solutions of complex systems modeled by differential equations. With the advent of modern deep learning, Physics-informed Neural Networks (PINNs) are evolving as a new paradigm for solving differential equations with a pseudo-closed form solution. Unlike numerical methods, the PINNs can solve the differential equations mesh-free, integrate the experimental data, and resolve challenging inverse problems. However, one of the limitations of PINNs is the poor training caused by using the activation functions designed typically for purely data-driven problems. This work proposes a scalable tanh-based activation function for PINNs to improve learning the solutions of differential equations. The proposed Self-scalable tanh (Stan) function is smooth, non-saturating, and has a trainable parameter. It can allow an easy flow of gradients and enable systematic scaling of the input-output mapping during training. Various forward problems to solve differential equations and inverse problems to find the parameters of differential equations demonstrate that the Stan activation function can achieve better training and more accurate predictions than the existing activation functions for PINN in the literature.

摘要

微分方程在众多物理系统建模中至关重要,包括热学、制造和气象系统。传统上,数值方法常常用于近似由微分方程建模的复杂系统的解。随着现代深度学习的出现,物理信息神经网络(PINNs)正在演变成一种用于求解具有伪封闭形式解的微分方程的新范式。与数值方法不同,PINNs可以无网格地求解微分方程、整合实验数据并解决具有挑战性的逆问题。然而,PINNs的局限性之一是使用通常为纯数据驱动问题设计的激活函数导致训练效果不佳。这项工作提出了一种用于PINNs的基于双曲正切的可扩展激活函数,以改善对微分方程解的学习。所提出的自缩放双曲正切(Stan)函数是平滑的、非饱和的并且具有一个可训练参数。它可以使梯度轻松流动,并在训练期间实现输入-输出映射的系统缩放。各种求解微分方程的正向问题以及寻找微分方程参数的逆问题表明,与文献中现有用于PINN的激活函数相比,Stan激活函数可以实现更好的训练和更准确的预测。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验