Bedurke Florian, Klamroth Tillmann, Saalfrank Peter
Universität Potsdam, Institut für Chemie, Karl-Liebknecht-Str. 24-25, D-14476 Potsdam-Golm, Germany.
Phys Chem Chem Phys. 2021 Jun 23;23(24):13544-13560. doi: 10.1039/d1cp01100f.
With recent experimental advances in laser-driven electron dynamics in polyatomic molecules, the need arises for their reliable theoretical modelling. Among efficient, yet fairly accurate methods for many-electron dynamics are Time-Dependent Configuration Interaction Singles (TD-CIS) (a Wave Function Theory (WFT) method), and Real-Time Time-Dependent Density Functional Theory (RT-TD-DFT), respectively. Here we compare TD-CIS combined with extended Atomic Orbital (AO) bases, TD-CIS/AO, with RT-TD-DFT in a grid representation of the Kohn-Sham orbitals, RT-TD-DFT/Grid. Possible ionization losses are treated by complex absorbing potentials in energy space (for TD-CIS/AO) or real space (for RT-TD-DFT), respectively. The comparison is made for two test cases: (i) state-to-state transitions using resonant lasers (π-pulses), i.e., bound electron motion, and (ii) large-amplitude electron motion leading to High Harmonic Generation (HHG). Test systems are a H2 molecule and cis- and trans-1,2-dichlorethene, C2H2Cl2, (DCE). From time-dependent electronic energies, dipole moments and from HHG spectra, the following observations are made: first, for bound state-to-state transitions enforced by π-pulses, TD-CIS nicely accounts for the expected population inversion in contrast to RT-TD-DFT, in agreement with earlier findings. Secondly, when using laser pulses under non-resonant conditions, dipole moments and lower harmonics in HHG spectra are obtained by TD-CIS/AO which are in good agreement with those obtained with RT-TD-DFT/Grid. Deviations become larger for higher harmonics and at low laser intensities, i.e., for low-intensity HHG signals. We also carefully test effects of basis sets for TD-CIS/AO and grid size for RT-TD-DFT/Grid, different exchange-correlation functionals in RT-TD-DFT, and absorbing boundaries. Finally, for the present examples, TD-CIS/AO is observed to be at least an order of magnitude more computationally efficient than RT-TD-DFT/Grid.
随着多原子分子中激光驱动电子动力学的最新实验进展,对其进行可靠的理论建模变得十分必要。在用于多电子动力学的高效且相当准确的方法中,分别有含时单激发组态相互作用(TD - CIS)(一种波函数理论(WFT)方法)和实时含时密度泛函理论(RT - TD - DFT)。在此,我们将结合扩展原子轨道(AO)基组的TD - CIS(TD - CIS/AO)与采用Kohn - Sham轨道网格表示的RT - TD - DFT(RT - TD - DFT/Grid)进行比较。可能的电离损失分别通过能量空间中的复吸收势(用于TD - CIS/AO)或实空间中的复吸收势(用于RT - TD - DFT)来处理。针对两个测试案例进行了比较:(i)使用共振激光(π脉冲)的态到态跃迁,即束缚电子运动,以及(ii)导致高次谐波产生(HHG)的大幅度电子运动。测试系统为一个H₂分子和顺式及反式1,2 - 二氯乙烯(C₂H₂Cl₂,DCE)。从含时电子能量、偶极矩以及HHG光谱中,得出以下观察结果:第一,对于由π脉冲强制实现的束缚态到态跃迁,TD - CIS很好地解释了预期的粒子数反转,这与RT - TD - DFT不同,与早期研究结果一致。第二,在非共振条件下使用激光脉冲时,TD - CIS/AO得到的偶极矩和HHG光谱中的低次谐波与RT - TD - DFT/Grid得到的结果吻合良好。对于高次谐波以及在低激光强度下,即对于低强度HHG信号,偏差会变大。我们还仔细测试了TD - CIS/AO的基组效应、RT - TD - DFT/Grid的网格大小效应、RT - TD - DFT中不同的交换关联泛函以及吸收边界。最后,对于当前的例子,观察到TD - CIS/AO在计算效率上比RT - TD - DFT/Grid至少高一个数量级。