Research Center for Analytical Sciences, College of Chemistry, Tianjin Key Laboratory of Biosensing and Molecular Recognition, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China.
Laboratoire International Associé Centre National de la Recherche Scientifique et University of Illinois at Urbana-Champaign, Unité Mixte de Recherche n 7019, Université de Lorraine, BP 70239, 54506 Vandœuvre-lès-Nancy cedex, France.
J Chem Theory Comput. 2021 Jul 13;17(7):3886-3894. doi: 10.1021/acs.jctc.1c00103. Epub 2021 Jun 9.
Amid collective-variable (CV)-based importance-sampling algorithms, a hybrid of the extended adaptive biasing force and the well-tempered metadynamics algorithms (WTM-eABF) has proven particularly cost-effective for exploring the rugged free-energy landscapes that underlie biological processes. However, as an inherently CV-based algorithm, this hybrid scheme does not explicitly accelerate sampling in the space orthogonal to the chosen CVs, thereby limiting its efficiency and accuracy, most notably in those cases where the slow degrees of freedom of the process at hand are not accounted for in the model transition coordinate. Here, inspired by Gaussian-accelerated molecular dynamics (GaMD), we introduce the same CV-independent harmonic boost potential into WTM-eABF, yielding a hybrid algorithm coined GaWTM-eABF. This algorithm leans on WTM-eABF to explore the transition coordinate with a GaMD-mollified potential and recovers the unbiased free-energy landscape through thermodynamic integration followed by proper reweighting. As illustrated in our numerical tests, GaWTM-eABF effectively overcomes the free-energy barriers in orthogonal space and correctly recovers the unbiased potential of mean force (PMF). Furthermore, applying both GaWTM-eABF and WTM-eABF to two biologically relevant processes, namely, the reversible folding of (i) deca-alanine and (ii) chignolin, our results indicate that GaWTM-eABF reduces the uncertainty in the PMF calculation and converges appreciably faster than WTM-eABF. Obviating the need of multiple-copy strategies, GaWTM-eABF is a robust, computationally efficient algorithm to surmount the free-energy barriers in orthogonal space and maps with utmost fidelity the free-energy landscape along selections of CVs. Moreover, our strategy that combines WTM-eABF with GaMD can be easily extended to other biasing-force algorithms.
在基于集体变量 (CV) 的重要性抽样算法中,扩展自适应偏置力和调制分子动力学 (WTM-eABF) 的混合算法已被证明在探索生物过程所依赖的崎岖自由能景观方面非常有效。然而,作为一种固有的基于 CV 的算法,该混合方案并没有在所选 CV 正交空间中显式加速采样,从而限制了其效率和准确性,尤其是在当前过程的慢自由度没有被模型转换坐标考虑的情况下。在这里,受高斯加速分子动力学 (GaMD) 的启发,我们将相同的 CV 独立的调和提升势引入到 WTM-eABF 中,得到了一种混合算法,称为 GaWTM-eABF。该算法依赖于 WTM-eABF 用 GaMD 平滑化的势来探索过渡坐标,并通过热力学积分和适当的重新加权来恢复无偏自由能景观。正如我们的数值测试所示,GaWTM-eABF 有效地克服了正交空间中的自由能障碍,并正确地恢复了无偏的平均力势 (PMF)。此外,我们将 GaWTM-eABF 和 WTM-eABF 应用于两个具有生物学意义的过程,即(i)十肽丙氨酸和(ii)chignolin 的可逆折叠,我们的结果表明 GaWTM-eABF 降低了 PMF 计算的不确定性,并明显比 WTM-eABF 更快地收敛。GaWTM-eABF 不需要多副本策略,是一种强大、高效的算法,可以克服正交空间中的自由能障碍,并以最大的保真度沿着 CV 选择映射自由能景观。此外,我们将 WTM-eABF 与 GaMD 相结合的策略可以很容易地扩展到其他偏置力算法。