Suppr超能文献

在多维自由能景观中找到最佳路径。

Finding an Optimal Pathway on a Multidimensional Free-Energy Landscape.

机构信息

Research Center for Analytical Sciences, College of Chemistry, Tianjin Key Laboratory of Biosensing and Molecular Recognition, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China.

Laboratoire International Associé CNRS and University of Illinois at Urbana-Champaign, F-54506 Vandœuvre-lès-Nancy, France.

出版信息

J Chem Inf Model. 2020 Nov 23;60(11):5366-5374. doi: 10.1021/acs.jcim.0c00279. Epub 2020 Jun 10.

Abstract

An ad-hoc, yet widely adopted approach to investigate complex molecular objects in motion using importance-sampling schemes involves two steps, namely (i) mapping the multidimensional free-energy landscape that characterizes the movements in the molecular object at hand and (ii) finding the most probable transition path connecting basins of the free-energy hyperplane. To achieve this goal, we turn to an importance-sampling algorithm, coined well-tempered metadynamics-extended adaptive biasing force (WTM-eABF), aimed at mapping rugged free-energy landscapes, combined with a path-searching algorithm, which we call multidimensional lowest energy (MULE), to identify the underlying minimum free-energy pathway in the collective-variable space of interest. First, the well-tempered feature of the importance-sampling scheme confers to the latter an asymptotic convergence, while the overall algorithm inherits the advantage of high sampling efficiency of its predecessor, meta-eABF, making its performance less sensitive to user-defined parameters. Second, the Dijkstra algorithm implemented in MULE is able to identify with utmost efficiency a pathway that satisfies minimum free energy of activation among all the possible routes in the multidimensional free-energy landscape. Numerical simulations of three molecular assemblies indicate that association of WTM-eABF and MULE constitutes a reliable, efficient and robust approach for exploring coupled movements in complex molecular objects. On account of its ease of use and intrinsic performance, we expect WTM-eABF and MULE to become a tool of choice for both experts and nonexperts interested in the thermodynamics and the kinetics of processes relevant to chemistry and biology.

摘要

一种用于使用重要性抽样方案研究运动中的复杂分子对象的特定但广泛采用的方法涉及两个步骤,即(i)绘制特征分子对象运动的多维自由能景观,和(ii)找到连接自由能超平面盆地的最可能跃迁路径。为了实现这个目标,我们采用了一种重要性抽样算法,称为温敏元动力学扩展自适应偏差力(WTM-eABF),旨在绘制崎岖的自由能景观,并结合路径搜索算法,我们称之为多维最低能量(MULE),以识别感兴趣的集体变量空间中的潜在最小自由能途径。首先,重要性抽样方案的温敏特性赋予后者渐近收敛性,而整个算法继承了其前身元 eABF 的高采样效率的优势,使其性能对用户定义的参数不太敏感。其次,MULE 中实现的 Dijkstra 算法能够以最高效率识别满足多维自由能景观中所有可能路径中最小激活自由能的途径。三个分子组装的数值模拟表明,WTM-eABF 和 MULE 的结合构成了一种可靠、高效和稳健的方法,用于探索复杂分子对象中的耦合运动。由于其易用性和内在性能,我们期望 WTM-eABF 和 MULE 成为对化学和生物学相关过程的热力学和动力学感兴趣的专家和非专家的首选工具。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验