Center for Infectious Disease Modeling and Analysis, Yale School of Public Health, New Haven, Connecticut, United States of America.
Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America.
PLoS Comput Biol. 2021 Jun 9;17(6):e1009031. doi: 10.1371/journal.pcbi.1009031. eCollection 2021 Jun.
Treating macaques with an anti-α4β7 antibody under the umbrella of combination antiretroviral therapy (cART) during early SIV infection can lead to viral remission, with viral loads maintained at < 50 SIV RNA copies/ml after removal of all treatment in a subset of animals. Depletion of CD8+ lymphocytes in controllers resulted in transient recrudescence of viremia, suggesting that the combination of cART and anti-α4β7 antibody treatment led to a state where ongoing immune responses kept the virus undetectable in the absence of treatment. A previous mathematical model of HIV infection and cART incorporates immune effector cell responses and exhibits the property of two different viral load set-points. While the lower set-point could correspond to the attainment of long-term viral remission, attaining the higher set-point may be the result of viral rebound. Here we expand that model to include possible mechanisms of action of an anti-α4β7 antibody operating in these treated animals. We show that the model can fit the longitudinal viral load data from both IgG control and anti-α4β7 antibody treated macaques, suggesting explanations for the viral control associated with cART and an anti-α4β7 antibody treatment. This effective perturbation to the virus-host interaction can also explain observations in other nonhuman primate experiments in which cART and immunotherapy have led to post-treatment control or resetting of the viral load set-point. Interestingly, because the viral kinetics in the various treated animals differed-some animals exhibited large fluctuations in viral load after cART cessation-the model suggests that anti-α4β7 treatment could act by different primary mechanisms in different animals and still lead to post-treatment viral control. This outcome is nonetheless in accordance with a model with two stable viral load set-points, in which therapy can perturb the system from one set-point to a lower one through different biological mechanisms.
在 SIV 感染早期,通过联合抗逆转录病毒疗法(cART)用抗 α4β7 抗体治疗食蟹猴,可以导致病毒缓解,在一小部分动物中,停止所有治疗后,病毒载量维持在 <50 SIV RNA 拷贝/ml。在控制者中耗尽 CD8+淋巴细胞会导致病毒血症短暂复发,这表明 cART 和抗 α4β7 抗体治疗的组合导致了一种状态,即持续的免疫反应在没有治疗的情况下使病毒无法检测到。之前的 HIV 感染和 cART 的数学模型包含免疫效应细胞反应,并表现出两种不同病毒载量基准点的特性。虽然较低的基准点可能对应于长期病毒缓解的实现,但达到较高的基准点可能是病毒反弹的结果。在这里,我们扩展了该模型,以包括在这些治疗动物中抗 α4β7 抗体的可能作用机制。我们表明,该模型可以拟合 IgG 对照和抗 α4β7 抗体治疗的食蟹猴的纵向病毒载量数据,这表明了 cART 和抗 α4β7 抗体治疗与病毒控制相关的解释。这种对病毒-宿主相互作用的有效干扰也可以解释其他非人类灵长类动物实验中的观察结果,在这些实验中,cART 和免疫疗法导致治疗后控制或重置病毒载量基准点。有趣的是,由于各种治疗动物中的病毒动力学不同-一些动物在停止 cART 后病毒载量会出现大幅波动-该模型表明,抗 α4β7 治疗在不同动物中可能通过不同的主要机制起作用,仍然可以导致治疗后病毒控制。然而,这种结果与具有两个稳定病毒载量基准点的模型一致,在该模型中,通过不同的生物学机制,治疗可以将系统从一个基准点扰动到一个较低的基准点。