Department of Surgery, Carver College of Medicine, The University of Iowa, Iowa City, Iowa, USA.
Carver College of Medicine, The University of Iowa, Iowa City, Iowa, USA.
Emerg Med J. 2022 Apr;39(4):301-307. doi: 10.1136/emermed-2020-210693. Epub 2021 Jun 9.
A consistent approach to cervical spine injury (CSI) clearance for patients 65 and older remains a challenge. Clinical clearance algorithms like the National Emergency X-Radiography Utilisation Study (NEXUS) criteria have variable accuracy and the Canadian C-spine rule excludes older patients. Routine CT of the cervical spine is performed to rule out CSI but at an increased cost and low yield. Herein, we aimed to identify predictive clinical variables to selectively screen older patients for CSI.
The University of Iowa's trauma registry was interrogated to retrospectively identify all patients 65 years and older who presented with trauma from a ground-level fall from January 2012 to July 2017. The relationship between predictive variables (demographics, NEXUS criteria and distracting injuries) and presence of CSI was examined using the generalised linear modelling (GLM) framework. A training set was used to build the statistical models to identify clinical variables that can be used to predict CSI and a validation set was used to assess the reliability and consistency of the model coefficients estimated from the training set.
Overall, 2312 patients ≥65 admitted for ground-level falls were identified; 253 (10.9%) patients had a CSI. Using the GLM framework, the best predictive model for CSI included midline tenderness, focal neurological deficit and signs of trauma to the head/face, with midline tenderness highly predictive of CSI (OR=22.961 (15.178-34.737); p<0.001). The negative predictive value (NPV) for this model was 95.1% (93.9%-96.3%). In the absence of midline tenderness, the best model included focal neurological deficit (OR=2.601 (1.340-5.049); p=0.005) and signs of trauma to the head/face (OR=3.024 (1.898-4.815); p<0.001). The NPV was 94.3% (93.1%-95.5%).
Midline tenderness, focal neurological deficit and signs of trauma to the head/face were significant in this older population. The absence of all three variables indicates lower likelihood of CSI for patients≥65. Future observational studies are warranted to prospectively validate this model.
对于 65 岁及以上的患者,颈椎损伤 (CSI) 清除的一致方法仍然是一个挑战。临床清除算法,如国家急诊 X 射线利用研究 (NEXUS) 标准,其准确性各不相同,而加拿大颈椎规则则排除了老年患者。为了排除 CSI,通常对颈椎进行 CT 检查,但成本增加且收益较低。在此,我们旨在确定预测性临床变量,以便选择性地对老年患者进行 CSI 筛查。
通过检索爱荷华大学创伤登记处,回顾性地确定了 2012 年 1 月至 2017 年 7 月间因地面坠落伤就诊的所有 65 岁及以上的患者。使用广义线性模型 (GLM) 框架研究预测变量(人口统计学、NEXUS 标准和分散性损伤)与 CSI 存在的关系。使用训练集构建统计模型,以确定可用于预测 CSI 的临床变量,并使用验证集评估从训练集估计的模型系数的可靠性和一致性。
总体而言,确定了 2312 名因地面坠落伤就诊的≥65 岁患者;253 名(10.9%)患者有 CSI。使用 GLM 框架,CSI 的最佳预测模型包括中线压痛、局灶性神经功能缺损和头部/面部创伤迹象,中线压痛高度预测 CSI(OR=22.961(15.178-34.737);p<0.001)。该模型的阴性预测值(NPV)为 95.1%(93.9%-96.3%)。在没有中线压痛的情况下,最佳模型包括局灶性神经功能缺损(OR=2.601(1.340-5.049);p=0.005)和头部/面部创伤迹象(OR=3.024(1.898-4.815);p<0.001)。NPV 为 94.3%(93.1%-95.5%)。
中线压痛、局灶性神经功能缺损和头部/面部创伤迹象在该老年人群中具有重要意义。三个变量均不存在表明≥65 岁患者发生 CSI 的可能性较低。需要进行未来的观察性研究以前瞻性验证该模型。