Suppr超能文献

Human ankle joint stiffness over the full range of muscle activation levels.

作者信息

Weiss P L, Hunter I W, Kearney R E

机构信息

Biomedical Engineering Unit, Faculty of Medicine, Montreal, Canada.

出版信息

J Biomech. 1988;21(7):539-44. doi: 10.1016/0021-9290(88)90217-5.

Abstract

System identification techniques have been used to track changes in dynamic stiffness of the human ankle joint over a wide range of muscle contraction levels. Subjects lay supine on an experimental table with their left foot encased in a rigid, low-inertia cast which was fixed to an electro-hydraulic actuator operating as a position servo. Subjects generated tonic plantarflexor or dorsiflexor torques of different magnitudes ranging from rest to maximum voluntary contractions (MVC) during repeated presentations of a stochastic ankle angular position perturbation. Compliance impulse response functions (IRF) were determined from every 2.5 s perturbation sequence. The gain (G), natural frequency (omega n), and damping (zeta) parameters of the second-order model providing the best fit to each IRF were determined and used to compute the corresponding inertial (I), viscous (B) and elastic (K) stiffness parameters. The behaviour of these parameters with mean torque was found to follow two simple rules. First, the elastic parameter (K) increased in proportion to mean ankle torque as it was varied from rest to MVC; these changes were considerable involving increases of more than an order of magnitude. Second, the damping parameter (zeta) remained almost invariant over the entire range of contractions despite the dramatic changes in K.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验