ARC Centre of Excellence in Exciton Science, School of Mathematics and Statistics, The University of Melbourne, Victoria 3010, Australia.
Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States.
Nano Lett. 2021 Jun 23;21(12):4959-4965. doi: 10.1021/acs.nanolett.1c00603. Epub 2021 Jun 10.
The Navier slip condition describes the motion of a liquid relative to a neighboring solid surface, with its characteristic Navier slip length being a constitutive property of the solid-liquid interface. Measurement of this slip length is complicated by its small magnitude, expected to be in the nanometer range based on molecular simulations. Here, we report an experimental technique that interrogates the Navier slip length on individual nanoparticles immersed in liquid with subnanometer precision. Proof-of-principle experiments on individual, citrate-stabilized, gold nanoparticles in water give a constant slip length of 2.7 ± 0.6 nm (95% C.I.), independent of particle size. Achieving this feature of size independence is central to any measurement of this constitutive property, which is facilitated through the use of individual particles of varying radii. This demonstration motivates studies that can now validate the wealth of existing molecular simulation data on slip.
纳维滑动条件描述了液体相对于相邻固体表面的运动,其特征纳维滑动长度是固液界面的本构性质。由于其大小较小,预计在纳米范围内,根据分子模拟,因此对该滑动长度的测量很复杂。在这里,我们报告了一种实验技术,可以在纳米级精度下探测单个纳米粒子在液体中的纳维滑动长度。在水中的单个、柠檬酸稳定的金纳米粒子上进行的原理验证实验给出了恒定的滑动长度为 2.7 ± 0.6nm(95%置信区间),与颗粒尺寸无关。通过使用不同半径的单个粒子来实现这种尺寸独立性的特征,这对于测量这种本构性质是至关重要的。这一演示激发了现在可以验证大量现有分子模拟数据的研究。