Suppr超能文献

可视化中的隐含误差、不确定性和置信度:一个考古案例研究。

Implicit Error, Uncertainty and Confidence in Visualization: An Archaeological Case Study.

出版信息

IEEE Trans Vis Comput Graph. 2022 Dec;28(12):4389-4402. doi: 10.1109/TVCG.2021.3088339. Epub 2022 Oct 26.

Abstract

While we know that the visualization of quantifiable uncertainty impacts the confidence in insights, little is known about whether the same is true for uncertainty that originates from aspects so inherent to the data that they can only be accounted for qualitatively. Being embedded within an archaeological project, we realized how assessing such qualitative uncertainty is crucial in gaining a holistic and accurate understanding of regional spatio-temporal patterns of human settlements over millennia. We therefore investigated the impact of visualizing qualitative implicit errors on the sense-making process via a probe that deliberately represented three distinct implicit errors, i.e., differing collection methods, subjectivity of data interpretations and assumptions on temporal continuity. By analyzing the interactions of 14 archaeologists with different levels of domain expertise, we discovered that novices became more actively aware of typically overlooked data issues and domain experts became more confident of the visualization itself. We observed how participants quoted social factors to alleviate some uncertainty, while in order to minimize it they requested additional contextual breadth or depth of the data. While our visualization did not alleviate all uncertainty, we recognized how it sparked reflective meta-insights regarding methodological directions of the data. We believe our findings inform future visualizations on how to handle the complexity of implicit errors for a range of user typologies and for highly data-critical application domains such as the digital humanities.

摘要

虽然我们知道对可量化不确定性的可视化会影响人们对洞察结果的信心,但对于那些源于数据固有属性、只能定性解释的不确定性,我们知之甚少。在一个考古项目中,我们意识到评估这种定性不确定性对于全面准确地了解数千年人类住区的区域时空模式至关重要。因此,我们通过一个探针来研究可视化定性隐式错误对理解过程的影响,该探针故意表示了三个不同的隐式错误,即不同的收集方法、数据解释的主观性和对时间连续性的假设。通过分析 14 名具有不同领域专业知识水平的考古学家之间的互动,我们发现新手更加主动地意识到通常被忽视的数据问题,而专家则对可视化本身更有信心。我们观察到参与者引用社会因素来减轻一些不确定性,而为了尽量减少不确定性,他们要求提供更多的上下文广度或数据深度。虽然我们的可视化并不能消除所有的不确定性,但我们认识到它如何引发了对数据方法论方向的反思性元洞察。我们相信,我们的研究结果为未来的可视化提供了信息,如何为一系列用户类型和高度数据关键的应用领域(如数字人文)处理隐式错误的复杂性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验