Hage-Hülsmann Jennifer, Metzger Sabine, Wewer Vera, Buechel Felix, Troost Katrin, Thies Stephan, Loeschcke Anita, Jaeger Karl-Erich, Drepper Thomas
Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf, Forschungszentrum Jülich, Jülich, D-52425, Germany; Cluster of Excellence on Plant Sciences (CEPLAS) Düsseldorf, D-40225, Germany.
Cluster of Excellence on Plant Sciences (CEPLAS) Düsseldorf, D-40225, Germany; MS Platform, Department of Biology, University of Cologne, Cologne, D-50674, Germany.
J Biotechnol. 2019;306S:100014. doi: 10.1016/j.btecx.2020.100014. Epub 2020 Feb 1.
Cyclic triterpenes are a large group of secondary metabolites produced by plants, fungi and bacteria. They have diverse biological functions, and offer potential health benefits for humans. Although various terpenes from the mono-, sesqui- and diterpene classes are easy to produce in engineered bacteria, heterologous synthesis of cyclic triterpenes is more challenging. We have recently shown that the triterpene cycloartenol can be produced in Rhodobacter capsulatus SB1003 but initial titers were low with 0.34mgL. To assess, if this phototrophic α-proteobacterium can be engineered for enhanced triterpene production, we followed two alternative strategies by comparing the performance of the R. capsulatus SB1003 wildtype strain with two recombinant strains carrying either a mevalonate pathway implemented from Paracoccus zeaxanthinifaciens or a deletion in the intrinsic carotenoid biosynthesis gene crtE. These strains are thus engineered for an enhanced isoprenoid biosynthesis or a suppressed precursor conversion by the competing carotenoid pathway. Moreover, three different cycloartenol synthase (CAS) genes from Arabidopsis thaliana or the myxobacterial strains Stigmatella aurantiaca Sga15 and DW4/3-1 were tested for heterologous cycloartenol synthesis. We found that the heterologous expression of mevalonate pathway enzymes had little impact on cycloartenol levels irrespective of the chosen CAS. In contrast, the use of the newly constructed carotenoid-deficient crtE deletion strain showed threefold increased cycloartenol product titers. We conclude that R. capsulatus is a promising alternative host for the functional expression of triterpene biosynthetic enzymes from plants and microbes. Apparently, product titers can also be improved by suppression of competing precursor consumption.
环三萜是植物、真菌和细菌产生的一大类次生代谢产物。它们具有多种生物学功能,对人类健康有潜在益处。尽管来自单萜、倍半萜和二萜类的各种萜类化合物在工程细菌中易于生产,但环三萜的异源合成更具挑战性。我们最近表明,三萜环阿屯醇可以在荚膜红细菌SB1003中产生,但初始滴度较低,为0.34mg/L。为了评估这种光合α-变形菌是否可以通过工程改造来提高三萜产量,我们采用了两种替代策略,将荚膜红细菌SB1003野生型菌株与两种重组菌株的性能进行比较,这两种重组菌株分别携带来自类胡萝卜素泽黄杆菌的甲羟戊酸途径或内在类胡萝卜素生物合成基因crtE的缺失。因此,这些菌株经过工程改造,以增强类异戊二烯生物合成或通过竞争性类胡萝卜素途径抑制前体转化。此外,还测试了来自拟南芥或粘细菌菌株橙黄粘球菌Sga15和DW4/3-1的三种不同的环阿屯醇合酶(CAS)基因用于异源环阿屯醇合成。我们发现,无论选择哪种CAS,甲羟戊酸途径酶的异源表达对环阿屯醇水平影响不大。相比之下,使用新构建的类胡萝卜素缺陷型crtE缺失菌株显示环阿屯醇产物滴度增加了三倍。我们得出结论认为,荚膜红细菌是用于植物和微生物三萜生物合成酶功能表达的有前景的替代宿主。显然,通过抑制竞争性前体消耗也可以提高产物滴度。