Suppr超能文献

生物系统中的扩散模型。

Models of dispersal in biological systems.

作者信息

Othmer H G, Dunbar S R, Alt W

机构信息

Department of Mathematics, University of Utah, Salt Lake City 84112.

出版信息

J Math Biol. 1988;26(3):263-98. doi: 10.1007/BF00277392.

Abstract

In order to provide a general framework within which the dispersal of cells or organisms can be studied, we introduce two stochastic processes that model the major modes of dispersal that are observed in nature. In the first type of movement, which we call the position jump or kangaroo process, the process comprises a sequence of alternating pauses and jumps. The duration of a pause is governed by a waiting time distribution, and the direction and distance traveled during a jump is fixed by the kernel of an integral operator that governs the spatial redistribution. Under certain assumptions concerning the existence of limits as the mean step size goes to zero and the frequency of stepping goes to infinity the process is governed by a diffusion equation, but other partial differential equations may result under different assumptions. The second major type of movement leads to what we call a velocity jump process. In this case the motion consists of a sequence of "runs" separated by reorientations, during which a new velocity is chosen. We show that under certain assumptions this process leads to a damped wave equation called the telegrapher's equation. We derive explicit expressions for the mean squared displacement and other experimentally observable quantities. Several generalizations, including the incorporation of a resting time between movements, are also studied. The available data on the motion of cells and other organisms is reviewed, and it is shown how the analysis of such data within the framework provided here can be carried out.

摘要

为了提供一个能够研究细胞或生物体扩散的通用框架,我们引入了两个随机过程,它们对自然界中观察到的主要扩散模式进行建模。在我们称为位置跳跃或袋鼠过程的第一种运动类型中,该过程由一系列交替的停顿和跳跃组成。停顿的持续时间由等待时间分布决定,而跳跃过程中的方向和移动距离则由控制空间重新分布的积分算子的核确定。在关于平均步长趋于零和步频趋于无穷时极限存在的某些假设下,该过程由扩散方程控制,但在不同假设下可能会产生其他偏微分方程。第二种主要的运动类型导致了我们所谓的速度跳跃过程。在这种情况下,运动由一系列由重新定向分隔的“奔跑”组成,在此期间选择一个新的速度。我们表明,在某些假设下,这个过程会导致一个称为电报方程的阻尼波动方程。我们推导出了均方位移和其他实验可观测数量的显式表达式。还研究了几种推广情况,包括在运动之间纳入静止时间。我们回顾了关于细胞和其他生物体运动的现有数据,并展示了如何在此处提供的框架内对这些数据进行分析。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验