Alt W
J Math Biol. 1980 Apr;9(2):147-77. doi: 10.1007/BF00275919.
Stochastic models of biased random walk are discussed, which describe the behavior of chemosensitive cells like bacteria or leukocytes in the gradient of a chemotactic factor. In particular the turning frequency and turn angle distribution are derived from certain biological hypotheses on the background of related experimental observations. Under suitable assumptions it is shown that solutions of the underlying differential-integral equation approximately satisfy the well-known Patlak-Keller-Segel diffusion equation, whose coefficients can be expressed in terms of the microscopic parameters. By an appropriate energy functional a precise error estimation of the diffusion approximation is given within the framework of singular perturbation theory.
讨论了有偏随机游走的随机模型,该模型描述了诸如细菌或白细胞等化学敏感细胞在趋化因子梯度中的行为。特别是,转向频率和转向角分布是基于相关实验观察结果的某些生物学假设推导出来的。在适当的假设下,证明了基础微分积分方程的解近似满足著名的帕特拉克 - 凯勒 - 西格尔扩散方程,其系数可以用微观参数表示。通过一个适当的能量泛函,在奇异摄动理论的框架内给出了扩散近似的精确误差估计。