Suppr超能文献

基于深度学习的内脏脂肪体积量化可预测肾移植受者的移植后糖尿病

Deep Learning-Based Quantification of Visceral Fat Volumes Predicts Posttransplant Diabetes Mellitus in Kidney Transplant Recipients.

作者信息

Kim Ji Eun, Park Sang Joon, Kim Yong Chul, Min Sang-Il, Ha Jongwon, Kim Yon Su, Yoon Soon Ho, Han Seung Seok

机构信息

Department of Internal Medicine, Korea University Guro Hospital, Seoul, South Korea.

Department of Radiology, Seoul National University College of Medicine, Seoul, South Korea.

出版信息

Front Med (Lausanne). 2021 May 25;8:632097. doi: 10.3389/fmed.2021.632097. eCollection 2021.

Abstract

Because obesity is associated with the risk of posttransplant diabetes mellitus (PTDM), the precise estimation of visceral fat mass before transplantation may be helpful. Herein, we addressed whether a deep-learning based volumetric fat quantification on pretransplant computed tomographic images predicted the risk of PTDM more precisely than body mass index (BMI). We retrospectively included a total of 718 nondiabetic kidney recipients who underwent pretransplant abdominal computed tomography. The 2D (waist) and 3D (waist or abdominal) volumes of visceral, subcutaneous, and total fat masses were automatically quantified using the deep neural network. The predictability of the PTDM risk was estimated using a multivariate Cox model and compared among the fat parameters using the areas under the receiver operating characteristic curves (AUROCs). PTDM occurred in 179 patients (24.9%) during the median follow-up period of 5 years (interquartile range, 2.5-8.6 years). All the fat parameters predicted the risk of PTDM, but the visceral and total fat volumes from 2D and 3D evaluations had higher AUROC values than BMI did, and the best predictor of PTDM was the 3D abdominal visceral fat volumes [AUROC, 0.688 (0.636-0.741)]. The addition of the 3D abdominal VF volume to the model with clinical risk factors increased the predictability of PTDM, but BMI did not. A deep-learning based quantification of visceral fat volumes on computed tomographic images better predicts the risk of PTDM after kidney transplantation than BMI.

摘要

由于肥胖与移植后糖尿病(PTDM)风险相关,因此移植前准确估计内脏脂肪量可能会有所帮助。在此,我们探讨了基于深度学习的移植前计算机断层扫描图像体积脂肪定量是否比体重指数(BMI)更准确地预测PTDM风险。我们回顾性纳入了718例接受移植前腹部计算机断层扫描的非糖尿病肾移植受者。使用深度神经网络自动定量内脏、皮下和总脂肪量的二维(腰围)和三维(腰围或腹部)体积。使用多变量Cox模型估计PTDM风险的可预测性,并使用受试者操作特征曲线下面积(AUROC)在脂肪参数之间进行比较。在中位随访期5年(四分位间距,2.5 - 8.6年)内,179例患者(24.9%)发生了PTDM。所有脂肪参数均能预测PTDM风险,但二维和三维评估的内脏和总脂肪体积的AUROC值高于BMI,PTDM的最佳预测指标是三维腹部内脏脂肪体积[AUROC,0.688(0.636 - 0.741)]。将三维腹部VF体积添加到具有临床风险因素的模型中可提高PTDM的可预测性,但BMI则不然。基于深度学习的计算机断层扫描图像内脏脂肪体积定量比BMI能更好地预测肾移植后PTDM的风险。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c8da/8185023/d373717a8259/fmed-08-632097-g0001.jpg

相似文献

1
Deep Learning-Based Quantification of Visceral Fat Volumes Predicts Posttransplant Diabetes Mellitus in Kidney Transplant Recipients.
Front Med (Lausanne). 2021 May 25;8:632097. doi: 10.3389/fmed.2021.632097. eCollection 2021.
4
Obesity as an independent predictor of posttransplant diabetes mellitus.
Transplant Proc. 2003 Dec;35(8):2922-6. doi: 10.1016/j.transproceed.2003.10.074.
6
Risk factors and outcomes associated with posttransplant diabetes mellitus in kidney transplant recipients.
Transplant Proc. 2010 Jun;42(5):1685-9. doi: 10.1016/j.transproceed.2009.12.062.
7
The Association of Pre-Transplant C-Peptide Level with the Development of Post-Transplant Diabetes: A Cohort Study.
Kidney360. 2022 Jun 28;3(10):1738-1745. doi: 10.34067/KID.0003742022. eCollection 2022 Oct 27.
9
Posttransplant diabetes mellitus: incidence and risk factors.
Transplant Proc. 2009 Sep;41(7):2811-3. doi: 10.1016/j.transproceed.2009.07.043.

引用本文的文献

1
Myosteatosis as a New Risk Factor of Surgical Complications in Kidney Transplant Recipients: A Retrospective Study.
J Cachexia Sarcopenia Muscle. 2025 Jun;16(3):e13746. doi: 10.1002/jcsm.13746.
2
Clinical and Radiological Fusion: A New Frontier in Predicting Post-Transplant Diabetes Mellitus.
Transpl Int. 2025 Apr 3;38:14377. doi: 10.3389/ti.2025.14377. eCollection 2025.
3
4
Low skull bone density is associated with poor motor prognosis in women with Parkinson's disease.
Front Aging Neurosci. 2022 Nov 15;14:1053786. doi: 10.3389/fnagi.2022.1053786. eCollection 2022.
5
Prevention of Post-Transplant Diabetes Mellitus: Towards a Personalized Approach.
J Pers Med. 2022 Jan 15;12(1):116. doi: 10.3390/jpm12010116.

本文引用的文献

1
Automated Abdominal Segmentation of CT Scans for Body Composition Analysis Using Deep Learning.
Radiology. 2019 Mar;290(3):669-679. doi: 10.1148/radiol.2018181432. Epub 2018 Dec 11.
2
Association of Body Mass Index and the Risk of New-Onset Diabetes After Kidney Transplantation: A Meta-analysis.
Transplant Proc. 2018 Jun;50(5):1316-1325. doi: 10.1016/j.transproceed.2018.02.075. Epub 2018 Mar 10.
3
Morphometric age and survival following kidney transplantation.
Clin Transplant. 2017 Oct;31(10). doi: 10.1111/ctr.13066. Epub 2017 Aug 28.
6
Adapting to Artificial Intelligence: Radiologists and Pathologists as Information Specialists.
JAMA. 2016 Dec 13;316(22):2353-2354. doi: 10.1001/jama.2016.17438.
8
Machine Learning and the Profession of Medicine.
JAMA. 2016 Feb 9;315(6):551-2. doi: 10.1001/jama.2015.18421.
10
Post-transplantation diabetes-state of the art.
Lancet Diabetes Endocrinol. 2016 Apr;4(4):337-49. doi: 10.1016/S2213-8587(15)00387-3. Epub 2015 Nov 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验