Suppr超能文献

猫胸段脊髓中的呼吸中间神经元。

Respiratory interneurones in the thoracic spinal cord of the cat.

作者信息

Kirkwood P A, Munson J B, Sears T A, Westgaard R H

机构信息

Sobell Department of Neurophysiology, Institute of Neurology, London.

出版信息

J Physiol. 1988 Jan;395:161-92. doi: 10.1113/jphysiol.1988.sp016913.

Abstract
  1. The discharges of spontaneously firing neurones, whose activity was modulated in phase with the central respiratory cycle, were recorded in the thoracic ventral horn (T3-T9) of anaesthetized, paralysed cats. 2. Out of 310 neurones, forty-six were positively identified as motoneurones by antidromic activation or spike-triggered averaging, fifty-four were positively identified as interneurones by antidromic activation from other spinal cord segments and ninety were indirectly identified as interneurones by virtue of their positions or firing rates as compared to the motoneurones. 3. Units were classified as inspiratory (64%), expiratory (25%) or post-inspiratory (7%) according to the times of their maximum firing rates. The remaining 4% consisted of units whose discharges were either strongly locked to the respiratory pump cycle or did not fit into the other categories. All but one of the motoneurones were classified as inspiratory or expiratory. 4. Inspiratory and expiratory units were further classified as early, late or tonic according to the starting times of their discharges in the respiratory cycle. The interneurones (both positively and indirectly identified) included more of the early and tonic categories and more fast-firing units than did the motoneurones in both the inspiratory and expiratory groups. 5. The locations of the motoneurones corresponded to the known positions of the intercostal and interchondral motor nuclei, including clear segregation of inspiratory and expiratory populations. The locations of neither the interneurones nor the unidentified units were segregated according to their firing patterns. These neurones were concentrated in the medial half of the ventral horn and were found generally more dorsally than the positions of the motoneurones, though their positions overlapped considerably with this group. 6. The axons of the positively identified interneurones were identified from one to five segments caudally and mostly contralaterally, but were not traced to their terminations. Some axons were located by microstimulation and found to run in the ventral or ventromedial white matter. Conduction velocities covered a wide range, 8 to around 100 m/s, mean 53 m/s. 7. Preliminary calculations indicate that there may be almost 10 times more respiratory thoracic interneurones as respiratory bulbospinal neurones.(ABSTRACT TRUNCATED AT 400 WORDS)
摘要
  1. 在麻醉、麻痹的猫的胸段腹角(T3 - T9)记录了自发放电神经元的放电情况,其活动与中枢呼吸周期同步调制。2. 在310个神经元中,46个通过逆向激活或锋电位触发平均法被明确鉴定为运动神经元,54个通过来自其他脊髓节段的逆向激活被明确鉴定为中间神经元,90个根据其位置或放电频率与运动神经元相比间接鉴定为中间神经元。3. 根据最大放电频率的时间,神经元被分类为吸气性(64%)、呼气性(25%)或吸气后性(7%)。其余4%由放电要么强烈锁定于呼吸泵周期要么不属于其他类别的神经元组成。除了一个运动神经元外,所有运动神经元都被分类为吸气性或呼气性。4. 根据呼吸周期中放电的起始时间,吸气性和呼气性神经元进一步分类为早期、晚期或紧张性。在吸气性和呼气性组中,中间神经元(包括明确鉴定和间接鉴定的)比运动神经元包含更多的早期和紧张性类别以及更多快速放电的神经元。5. 运动神经元的位置与肋间和肋软骨间运动核的已知位置相对应,包括吸气性和呼气性群体的明显分离。中间神经元和未鉴定神经元的位置均未根据其放电模式分离。这些神经元集中在腹角的内侧半部分,通常比运动神经元的位置更靠背侧,尽管它们的位置与该群体有相当大的重叠。6. 明确鉴定的中间神经元的轴突从尾侧一到五个节段被鉴定出来,大多是对侧的,但未追踪到其终末。一些轴突通过微刺激定位,发现走行于腹侧或腹内侧白质中。传导速度范围很广,8至约100 m/s,平均53 m/s。7. 初步计算表明呼吸性胸段中间神经元的数量可能几乎是呼吸性延髓脊髓神经元的10倍。(摘要截短至400字)

相似文献

1
Respiratory interneurones in the thoracic spinal cord of the cat.
J Physiol. 1988 Jan;395:161-92. doi: 10.1113/jphysiol.1988.sp016913.
2
Synaptic excitation in the thoracic spinal cord from expiratory bulbospinal neurones in the cat.
J Physiol. 1995 Apr 1;484 ( Pt 1)(Pt 1):201-25. doi: 10.1113/jphysiol.1995.sp020659.
3
Functional identities of thoracic respiratory interneurones in the cat.
J Physiol. 1993 Feb;461:667-87. doi: 10.1113/jphysiol.1993.sp019535.
6
Variations in the time course of the synchronization of intercostal motoneurones in the cat.
J Physiol. 1982 Jun;327:105-35. doi: 10.1113/jphysiol.1982.sp014223.
8
Contralateral projections of thoracic respiratory interneurones in the cat.
J Physiol. 1993 Feb;461:647-65. doi: 10.1113/jphysiol.1993.sp019534.
9
Axonal projections and synaptic connections of C5 segment expiratory interneurones in the cat.
J Physiol. 1993 Oct;470:431-44. doi: 10.1113/jphysiol.1993.sp019867.

引用本文的文献

1
An update on spinal cord injury and diaphragm neuromotor control.
Expert Rev Respir Med. 2025 Jul;19(7):679-695. doi: 10.1080/17476348.2025.2495165. Epub 2025 Apr 22.
2
Targeting Spinal Interneurons for Respiratory Recovery After Spinal Cord Injury.
Cells. 2025 Feb 15;14(4):288. doi: 10.3390/cells14040288.
3
Pharmacological modulation of respiratory control: Ampakines as a therapeutic strategy.
Pharmacol Ther. 2025 Jan;265:108744. doi: 10.1016/j.pharmthera.2024.108744. Epub 2024 Nov 8.
4
The phrenic neuromuscular system.
Handb Clin Neurol. 2022;188:393-408. doi: 10.1016/B978-0-323-91534-2.00012-6.
5
Why Firing Rate Distributions Are Important for Understanding Spinal Central Pattern Generators.
Front Hum Neurosci. 2021 Sep 3;15:719388. doi: 10.3389/fnhum.2021.719388. eCollection 2021.
6
Motoneurone synchronization for intercostal and abdominal muscles: interneurone influences in two different species.
Exp Brain Res. 2021 Jan;239(1):95-115. doi: 10.1007/s00221-020-05924-6. Epub 2020 Oct 26.
7
Targeted activation of spinal respiratory neural circuits.
Exp Neurol. 2020 Jun;328:113256. doi: 10.1016/j.expneurol.2020.113256. Epub 2020 Feb 19.
8
Role of Propriospinal Neurons in Control of Respiratory Muscles and Recovery of Breathing Following Injury.
Front Syst Neurosci. 2020 Jan 17;13:84. doi: 10.3389/fnsys.2019.00084. eCollection 2019.
9
Anatomical Plasticity of Rostrally Terminating Axons as a Possible Bridging Substrate across a Spinal Injury.
J Neurotrauma. 2020 Mar 15;37(6):877-888. doi: 10.1089/neu.2018.6193. Epub 2019 Dec 23.
10
The mammalian spinal commissural system: properties and functions.
J Neurophysiol. 2020 Jan 1;123(1):4-21. doi: 10.1152/jn.00347.2019. Epub 2019 Nov 6.

本文引用的文献

1
Motor and propriospinal cells in the thoracic and lumbar ventral horn of the rhesus monkey.
J Comp Neurol. 1951 Aug;95(1):103-23. doi: 10.1002/cne.900950107.
2
Single unit activity in medullary respiratory centers of cat.
J Neurophysiol. 1959 Sep;22:590-8. doi: 10.1152/jn.1959.22.5.590.
3
4
EFFERENT DISCHARGES IN ALPHA AND FUSIMOTOR FIBRES OF INTERCOSTAL NERVES OF THE CAT.
J Physiol. 1964 Nov;174(2):295-315. doi: 10.1113/jphysiol.1964.sp007488.
5
THE SLOW POTENTIALS OF THORACIC RESPIRATORY MOTONEURONES AND THEIR RELATION TO BREATHING.
J Physiol. 1964 Dec;175(3):404-24. doi: 10.1113/jphysiol.1964.sp007524.
6
SOME PROPERTIES AND REFLEX CONNEXIONS OF RESPIRATORY MOTONEURONES OF THE CAT'S THORACIC SPINAL CORD.
J Physiol. 1964 Dec;175(3):386-403. doi: 10.1113/jphysiol.1964.sp007523.
7
SPINAL RESPIRATORY NEURONS AND THEIR REACTION TO STIMULATION OF INTERCOSTAL NERVES.
Pflugers Arch Gesamte Physiol Menschen Tiere. 1963 Oct 25;278:172-80. doi: 10.1007/BF00362689.
8
Organization of spinal respiratory neurons.
Ann N Y Acad Sci. 1963 Jun 24;109:561-70. doi: 10.1111/j.1749-6632.1963.tb13487.x.
9
The identification of single units in central visual pathways.
J Physiol. 1962 Aug;162(3):409-31. doi: 10.1113/jphysiol.1962.sp006942.
10
The contribution of the intercostal muscles to the effort of respiration in man.
J Physiol. 1960 May;151(2):390-402. doi: 10.1113/jphysiol.1960.sp006446.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验