Suppr超能文献

猫肋间运动神经元同步化时间进程的变化。

Variations in the time course of the synchronization of intercostal motoneurones in the cat.

作者信息

Kirkwood P A, Sears T A, Tuck D L, Westgaard R H

出版信息

J Physiol. 1982 Jun;327:105-35. doi: 10.1113/jphysiol.1982.sp014223.

Abstract
  1. Synchronization of intercostal motoneurones was studied by the construction of cross-correlation histograms which related the firing times of paired groups of efferent inspiratory or expiratory discharges recorded from filaments of the external or internal nerves of anaesthetized or decerebrate cats.2. The principal feature of the histograms was always a central peak but the time course of the central peak showed considerable variation. Three forms of synchronization were defined on the basis of the time course of the central peak: (i) short-term synchronization (Sears & Stagg, 1976), where the peak was narrow, extending over about +/-3 ms but sometimes with weak shoulders to about +/-5 ms; (ii) broad-peak synchronization where the peak was wider than this (often +/-20 ms or more) but where there were no strong periodicities; (iii) high-frequency oscillation (h.f.o) synchronization, which was named from the related phenomena in medullary and phrenic recordings (Cohen, 1979), where there were periodic peaks on either side of the central peak with a frequency in the range 60-120 Hz. Combinations of these forms of synchronization were seen in some histograms.3. When different animals were compared, broad peak synchronization was seen in association with light anaesthesia and with polysynaptic excitation of the motoneurones from muscle spindle afferents.4. In individual animals, additional anaesthesia depressed both broad peak and h.f.o. synchronization.5. Raising P(A, CO2), which increased the respiratory drive to the motoneurones, favoured short-term or h.f.o. synchronization at the expense of broad-peak synchronization.6. In three decerebrate animals only short-term or h.f.o. synchronization was seen.7. Spinal cord lesions above or below the segments of interest promoted broad-peak synchronization, even with high P(A, CO2) or deep anaesthesia.8. We conclude: (i) that short-term synchronization, due mainly to the branching of presynaptic axons, is generated mainly by those axons which transmit the respiratory drive, that drive providing most of the excitation of the motoneurones in moderately deep anaesthesia; (ii) that h.f.o. synchronization arises from the periodic synchronization of the discharges in these same presynaptic axons; (iii) that broad-peak synchronization is generated by the activity of other presynaptic neurones whose discharges are also synchronized, but aperiodically, these neurones most likely including spinal cord interneurones which are active in light anaesthesia or when released by spinal cord lesions.9. These conclusions are supported by comparisons between intracellular recordings from inspiratory motoneurones in animals showing different forms of motoneurone synchronization, the comparison including the measurements of ;average common excitation' (a.c.e.) potentials (Kirkwood & Sears, 1978).
摘要
  1. 通过构建互相关直方图来研究肋间运动神经元的同步性,互相关直方图关联了从麻醉或去大脑猫的肋间外神经或肋间内神经细丝记录的成对传出吸气或呼气放电的发放时间。

  2. 直方图的主要特征始终是一个中心峰值,但中心峰值的时间进程显示出相当大的变化。根据中心峰值的时间进程定义了三种同步形式:(i) 短期同步(Sears和Stagg,1976),其中峰值很窄,大约在±3 ms范围内扩展,但有时有微弱的肩部延伸到±5 ms左右;(ii) 宽峰同步,其中峰值比这个更宽(通常为±20 ms或更宽),但没有强烈的周期性;(iii) 高频振荡(h.f.o)同步,这是根据延髓和膈神经记录中的相关现象命名的(Cohen,1979),其中在中心峰值两侧有周期性峰值,频率在60 - 120 Hz范围内。在一些直方图中可以看到这些同步形式的组合。

  3. 当比较不同动物时,宽峰同步与轻度麻醉以及来自肌梭传入纤维对运动神经元的多突触兴奋有关。

  4. 在个体动物中,额外的麻醉会抑制宽峰和h.f.o.同步。

  5. 提高P(A, CO2),这增加了对运动神经元的呼吸驱动,有利于短期或h.f.o.同步,而以宽峰同步为代价。

  6. 在三只去大脑动物中,只观察到短期或h.f.o.同步。

  7. 感兴趣节段上方或下方的脊髓损伤促进宽峰同步,即使在高P(A, CO2)或深度麻醉的情况下也是如此。

  8. 我们得出结论:(i) 短期同步主要是由于突触前轴突的分支产生的,主要由那些传递呼吸驱动的轴突产生,在中度深度麻醉下,这种驱动为运动神经元提供了大部分兴奋;(ii) h.f.o.同步源于这些相同突触前轴突放电的周期性同步;(iii) 宽峰同步是由其他突触前神经元的活动产生的,这些神经元的放电也是同步的,但无周期性,这些神经元很可能包括在轻度麻醉或脊髓损伤释放时活跃的脊髓中间神经元。

  9. 这些结论得到了对表现出不同形式运动神经元同步的动物吸气运动神经元细胞内记录之间比较的支持,这种比较包括对“平均共同兴奋”(a.c.e.)电位的测量(Kirkwood和Sears,1978)。

相似文献

1
Variations in the time course of the synchronization of intercostal motoneurones in the cat.
J Physiol. 1982 Jun;327:105-35. doi: 10.1113/jphysiol.1982.sp014223.
2
The spatial distribution of synchronization of intercostal motoneurones in the cat.
J Physiol. 1982 Jun;327:137-55. doi: 10.1113/jphysiol.1982.sp014224.
7
Synaptic excitation in the thoracic spinal cord from expiratory bulbospinal neurones in the cat.
J Physiol. 1995 Apr 1;484 ( Pt 1)(Pt 1):201-25. doi: 10.1113/jphysiol.1995.sp020659.
8
Evidence from motoneurone synchronization for disynaptic pathways in the control of inspiratory motoneurones in the cat.
J Physiol. 1997 Sep 15;503 ( Pt 3)(Pt 3):673-89. doi: 10.1111/j.1469-7793.1997.673bg.x.

引用本文的文献

1
Motoneurone synchronization for intercostal and abdominal muscles: interneurone influences in two different species.
Exp Brain Res. 2021 Jan;239(1):95-115. doi: 10.1007/s00221-020-05924-6. Epub 2020 Oct 26.
2
Sustained involuntary muscle activity in cerebral palsy and stroke: same symptom, diverse mechanisms.
Brain Commun. 2019 Nov 25;1(1):fcz037. doi: 10.1093/braincomms/fcz037. eCollection 2019.
3
Role of Propriospinal Neurons in Control of Respiratory Muscles and Recovery of Breathing Following Injury.
Front Syst Neurosci. 2020 Jan 17;13:84. doi: 10.3389/fnsys.2019.00084. eCollection 2019.
4
Parameters of Surface Electromyogram Suggest That Dry Immersion Relieves Motor Symptoms in Patients With Parkinsonism.
Front Neurosci. 2018 Sep 26;12:667. doi: 10.3389/fnins.2018.00667. eCollection 2018.
5
Cardiac modulation of alpha motoneuron discharges.
J Neurophysiol. 2018 May 1;119(5):1723-1730. doi: 10.1152/jn.00025.2018. Epub 2018 Feb 7.
7
A critical period of corticomuscular and EMG-EMG coherence detection in healthy infants aged 9-25 weeks.
J Physiol. 2017 Apr 15;595(8):2699-2713. doi: 10.1113/JP273090. Epub 2017 Feb 15.
9
Using Computational Neuroscience to Define Common Input to Spinal Motor Neurons.
Front Hum Neurosci. 2016 Jun 21;10:313. doi: 10.3389/fnhum.2016.00313. eCollection 2016.
10
Functional plasticity in the respiratory drive to thoracic motoneurons in the segment above a chronic lateral spinal cord lesion.
J Neurophysiol. 2016 Jan 1;115(1):554-67. doi: 10.1152/jn.00614.2015. Epub 2015 Oct 21.

本文引用的文献

1
Observations on reflex responses to single break-shocks.
J Physiol. 1915 Jul 5;49(5):331-48. doi: 10.1113/jphysiol.1915.sp001713.
2
Units in the cerebral cortex of the anaesthetized rat and the correlations between their discharges.
J Physiol. 1966 Dec;187(3):651-71. doi: 10.1113/jphysiol.1966.sp008116.
4
5
EFFERENT DISCHARGES IN ALPHA AND FUSIMOTOR FIBRES OF INTERCOSTAL NERVES OF THE CAT.
J Physiol. 1964 Nov;174(2):295-315. doi: 10.1113/jphysiol.1964.sp007488.
6
INVESTIGATIONS ON RESPIRATORY MOTONEURONES OF THE THORACIC SPINAL CORD.
Prog Brain Res. 1964;12:259-73. doi: 10.1016/s0079-6123(08)60627-5.
7
INTERCOSTAL MUSCLE SPINDLE ACTIVITY AND ITS GAMMA MOTOR CONTROL.
J Physiol. 1963 Oct;168(4):820-47. doi: 10.1113/jphysiol.1963.sp007225.
9
The segmental reflex relations of cutaneous afferent inflow to thoracic respiratory motoneurons.
J Neurophysiol. 1963 May;26:478-93. doi: 10.1152/jn.1963.26.3.478.
10
Organization of spinal respiratory neurons.
Ann N Y Acad Sci. 1963 Jun 24;109:561-70. doi: 10.1111/j.1749-6632.1963.tb13487.x.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验