Longhi Pietro
Institute for Theoretical Physics, ETH Zurich, 8093 Zurich, Switzerland.
Phys Rev Lett. 2021 May 28;126(21):211601. doi: 10.1103/PhysRevLett.126.211601.
We provide a closed-form expression for the motivic Kontsevich-Soibelman invariant for M theory in the background of the toric Calabi-Yau threefold K_{F_{0}}. This encodes the refined Bogomol'nyi-Prasad-Sommerfield spectrum of SU(2) 5D N=1 Yang-Mills theory on S^{1}×R^{4}, corresponding to rank-zero Donaldson-Thomas invariants for K_{F_{0}}, anywhere on the Coulomb branch.
我们给出了在复环面卡拉比-丘三维流形(K_{F_{0}})背景下(M)理论的动机康士维奇-索伊贝尔曼不变量的一个封闭形式表达式。这编码了(S^{1}\times R^{4})上(SU(2))五维(N = 1)杨-米尔斯理论的精细博戈莫尔尼-普拉萨德-索末菲谱,对应于(K_{F_{0}})在库仑分支上任意位置的零秩唐纳森-托马斯不变量。