Suppr超能文献

通过格林函数实现非厄米哈密顿量的体-边界对应

Bulk-Boundary Correspondence for Non-Hermitian Hamiltonians via Green Functions.

作者信息

Zirnstein Heinrich-Gregor, Refael Gil, Rosenow Bernd

机构信息

Institut für Theoretische Physik, Universität Leipzig, Brüderstrasse 16, 04103 Leipzig, Germany.

Institute of Quantum Information and Matter and Department of Physics, California Institute of Technology, Pasadena, California 91125, USA.

出版信息

Phys Rev Lett. 2021 May 28;126(21):216407. doi: 10.1103/PhysRevLett.126.216407.

Abstract

Genuinely non-Hermitian topological phases can be realized in open systems with sufficiently strong gain and loss; in such phases, the Hamiltonian cannot be deformed into a gapped Hermitian Hamiltonian without energy bands touching each other. Comparing Green functions for periodic and open boundary conditions we find that, in general, there is no correspondence between topological invariants computed for periodic boundary conditions, and boundary eigenstates observed for open boundary conditions. Instead, we find that the non-Hermitian winding number in one dimension signals a topological phase transition in the bulk: It implies spatial growth of the bulk Green function.

摘要

在具有足够强增益和损耗的开放系统中,可以实现真正的非厄米拓扑相;在这些相中,哈密顿量在能带不相互接触的情况下不能变形为带隙厄米哈密顿量。比较周期性和开放边界条件下的格林函数,我们发现,一般来说,为周期性边界条件计算的拓扑不变量与为开放边界条件观测到的边界本征态之间没有对应关系。相反,我们发现一维中的非厄米缠绕数标志着体中的拓扑相变:它意味着体格林函数的空间增长。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验