Suppr超能文献

来自光谱缠绕拓扑的量子化经典响应。

Quantized classical response from spectral winding topology.

作者信息

Li Linhu, Mu Sen, Lee Ching Hua, Gong Jiangbin

机构信息

Guangdong Provincial Key Laboratory of Quantum Metrology and Sensing & School of Physics and Astronomy, Sun Yat-Sen University (Zhuhai Campus), Zhuhai, China.

Department of Physics, National University of Singapore, Singapore, Republic of Singapore.

出版信息

Nat Commun. 2021 Sep 6;12(1):5294. doi: 10.1038/s41467-021-25626-z.

Abstract

Topologically quantized response is one of the focal points of contemporary condensed matter physics. While it directly results in quantized response coefficients in quantum systems, there has been no notion of quantized response in classical systems thus far. This is because quantized response has always been connected to topology via linear response theory that assumes a quantum mechanical ground state. Yet, classical systems can carry arbitrarily amounts of energy in each mode, even while possessing the same number of measurable edge states as their topological winding. In this work, we discover the totally new paradigm of quantized classical response, which is based on the spectral winding number in the complex spectral plane, rather than the winding of eigenstates in momentum space. Such quantized response is classical insofar as it applies to phenomenological non-Hermitian setting, arises from fundamental mathematical properties of the Green's function, and shows up in steady-state response, without invoking a conventional linear response theory. Specifically, the ratio of the change in one quantity depicting signal amplification to the variation in one imaginary flux-like parameter is found to display fascinating plateaus, with their quantized values given by the spectral winding numbers as the topological invariants.

摘要

拓扑量子化响应是当代凝聚态物理的焦点之一。虽然它直接导致量子系统中的响应系数量子化,但迄今为止经典系统中尚无量子化响应的概念。这是因为量子化响应一直通过假设量子力学基态的线性响应理论与拓扑相关联。然而,经典系统在每个模式中可以携带任意数量的能量,即使它们具有与拓扑缠绕相同数量的可测量边缘态。在这项工作中,我们发现了量子化经典响应的全新范式,它基于复谱平面中的谱缠绕数,而不是动量空间中本征态的缠绕。这种量子化响应是经典的,因为它适用于唯象非厄米情形,源于格林函数的基本数学性质,并出现在稳态响应中,无需调用传统的线性响应理论。具体而言,发现描述信号放大的一个量的变化与一个虚数通量样参数的变化之比呈现出迷人的平台,其量子化值由作为拓扑不变量的谱缠绕数给出。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0657/8421445/d544948fbc9a/41467_2021_25626_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验