Suppr超能文献

结构变化超出 EF 手对表观钙结合亲和力的贡献:来自 Parvalbumins 的见解。

Structural Changes beyond the EF-Hand Contribute to Apparent Calcium Binding Affinities: Insights from Parvalbumins.

机构信息

Stritch School of Medicine, Maywood, Illinois 60153, United States.

出版信息

J Phys Chem B. 2021 Jun 24;125(24):6390-6405. doi: 10.1021/acs.jpcb.1c01269. Epub 2021 Jun 11.

Abstract

Members of the parvalbumin (PV) family of calcium (Ca) binding proteins (CBPs) share a relatively high level of sequence similarity. However, their Ca affinities and selectivities against competing ions like Mg can widely vary. We conducted molecular dynamics simulations of several α-parvalbumin (αPV) constructs with micromolar to nanomolar Ca affinities to identify structural and dynamic features that contribute to their binding of ions. Specifically, we examined a D94S/G98E construct with a lower Ca affinity (≈-18 kcal/mol) relative to the wild type (WT) (≈-22 kcal/mol) and an S55D/E59D variant with enhanced affinity (≈-24 kcal/mol). Additionally, we also examined the binding of Mg to these isoforms, which is much weaker than Ca. We used mean spherical approximation (MSA) theory to evaluate ion binding thermodynamics within the proteins' EF-hand domains to account for the impact of ions' finite sizes and the surrounding electrolyte composition. While the MSA scores differentiated Mg from Ca, they did not indicate that Ca binding affinities at the binding loop differed between the PV isoforms. Instead, molecular mechanics generalized Born surface area (MM/GBSA) approximation energies, which we used to quantify the thermodynamic cost of structural rearrangement of the proteins upon binding ions, indicated that S55D/E59D αPV favored Ca binding by -20 kcal/mol relative to WT versus 30 kcal/mol for D94S/G98E αPV. Meanwhile, Mg binding was favored for the S55D/E59D αPV and D94S/G98E αPV variants by -18.32 and -1.65 kcal/mol, respectively. These energies implicate significant contributions to ion binding beyond oxygen coordination at the binding loop, which stemmed from changes in α-helicity, β-sheet character, and hydrogen bonding. Hence, Ca affinity and selectivity against Mg are emergent properties stemming from both local effects within the proteins' ion binding sites as well as non-local contributions elsewhere. Our findings broaden our understanding of the molecular bases governing αPV ion binding that are likely shared by members of the broad family of CBPs.

摘要

钙结合蛋白(CBPs)家族的成员 Parvalbumin(PV)具有相对较高的序列相似性。然而,它们对竞争离子(如 Mg)的亲和力和选择性差异很大。我们对几种具有微摩尔至纳摩尔 Ca 亲和力的α-PV(αPV)结构进行了分子动力学模拟,以确定导致其离子结合的结构和动态特征。具体来说,我们研究了一个 D94S/G98E 构建体,其 Ca 亲和力(≈-18 kcal/mol)相对于野生型(WT)(≈-22 kcal/mol)较低,以及一个 S55D/E59D 变体,其亲和力增强(≈-24 kcal/mol)。此外,我们还研究了这些同工型对 Mg 的结合,其结合强度远低于 Ca。我们使用平均球近似(MSA)理论来评估离子在蛋白质 EF 手结构域中的结合热力学,以解释离子有限大小和周围电解质组成的影响。虽然 MSA 分数区分了 Mg 和 Ca,但它们并没有表明 PV 同工型之间在结合环处的 Ca 结合亲和力不同。相反,分子力学广义 Born 表面积(MM/GBSA)近似能量,我们用它来量化蛋白质在结合离子时结构重排的热力学成本,表明 S55D/E59D αPV 相对于 WT 对 Ca 的结合亲和力有利,为-20 kcal/mol,而 D94S/G98E αPV 则为 30 kcal/mol。同时,S55D/E59D αPV 和 D94S/G98E αPV 变体对 Mg 的结合更有利,分别为-18.32 和-1.65 kcal/mol。这些能量表明,除了结合环处的氧配位外,离子结合还有其他重要贡献,这些贡献源于 α-螺旋、β-折叠特征和氢键的变化。因此,Ca 亲和力和对 Mg 的选择性是由蛋白质离子结合位点的局部效应以及其他非局部贡献共同产生的突现性质。我们的研究结果拓宽了我们对α-PV 离子结合的分子基础的理解,这可能是由广泛的 CBPs 家族成员共享的。

相似文献

1
Structural Changes beyond the EF-Hand Contribute to Apparent Calcium Binding Affinities: Insights from Parvalbumins.
J Phys Chem B. 2021 Jun 24;125(24):6390-6405. doi: 10.1021/acs.jpcb.1c01269. Epub 2021 Jun 11.
2
Understanding Ion Binding Affinity and Selectivity in β-Parvalbumin Using Molecular Dynamics and Mean Spherical Approximation Theory.
J Phys Chem B. 2016 Aug 25;120(33):8617-30. doi: 10.1021/acs.jpcb.6b02666. Epub 2016 Jul 1.
7
Crystal structure of a high-affinity variant of rat alpha-parvalbumin.
Biochemistry. 2004 Aug 10;43(31):10008-17. doi: 10.1021/bi0492915.
8
Association of the AB and CD-EF domains from rat alpha- and beta-parvalbumin.
Biochemistry. 2004 Aug 31;43(34):10906-17. doi: 10.1021/bi049254d.
9
Potential influence of Asp in the Ca2+ coordination position 5 of parvalbumin on the calcium-binding affinity: a computational study.
J Inorg Biochem. 2006 Nov;100(11):1879-87. doi: 10.1016/j.jinorgbio.2006.07.016. Epub 2006 Aug 5.

引用本文的文献

1
Combined effect of confinement and dielectric exclusion on ion adsorption in slits, pores, and cavities.
AIP Adv. 2024 Dec 24;14(12):125323. doi: 10.1063/5.0237169. eCollection 2024 Dec.
3
Calpain Regulation and Dysregulation-Its Effects on the Intercalated Disk.
Int J Mol Sci. 2023 Jul 21;24(14):11726. doi: 10.3390/ijms241411726.
4
Elucidating the molecular basis of spontaneous activation in an engineered mechanosensitive channel.
Comput Struct Biotechnol J. 2022 May 23;20:2539-2550. doi: 10.1016/j.csbj.2022.05.022. eCollection 2022.
5
Parvalbumin Role in Epilepsy and Psychiatric Comorbidities: From Mechanism to Intervention.
Front Integr Neurosci. 2022 Feb 17;16:765324. doi: 10.3389/fnint.2022.765324. eCollection 2022.

本文引用的文献

2
Molecular Basis of S100A1 Activation and Target Regulation Within Physiological Cytosolic Ca Levels.
Front Mol Biosci. 2020 Jun 23;7:77. doi: 10.3389/fmolb.2020.00077. eCollection 2020.
3
Key residues in TLR4-MD2 tetramer formation identified by free energy simulations.
PLoS Comput Biol. 2019 Oct 14;15(10):e1007228. doi: 10.1371/journal.pcbi.1007228. eCollection 2019 Oct.
4
Thermodynamics of Cation Binding to the Sarcoendoplasmic Reticulum Calcium ATPase Pump and Impacts on Enzyme Function.
J Chem Theory Comput. 2019 Apr 9;15(4):2692-2705. doi: 10.1021/acs.jctc.8b01312. Epub 2019 Mar 13.
5
Many-body effect determines the selectivity for Ca and Mg in proteins.
Proc Natl Acad Sci U S A. 2018 Aug 7;115(32):E7495-E7501. doi: 10.1073/pnas.1805049115. Epub 2018 Jul 23.
6
In search for globally disordered apo-parvalbumins: Case of parvalbumin β-1 from coho salmon.
Cell Calcium. 2017 Nov;67:53-64. doi: 10.1016/j.ceca.2017.08.011. Epub 2017 Sep 7.
7
What Can and Cannot Be Learned from Molecular Dynamics Simulations of Bacterial Proton-Coupled Oligopeptide Transporter GkPOT?
J Phys Chem B. 2017 Apr 20;121(15):3644-3656. doi: 10.1021/acs.jpcb.6b09733. Epub 2016 Dec 22.
8
Computational Methods for Configurational Entropy Using Internal and Cartesian Coordinates.
J Chem Theory Comput. 2016 Dec 13;12(12):5990-6000. doi: 10.1021/acs.jctc.6b00563. Epub 2016 Dec 2.
9
Mechanisms of secondary structure breakers in soluble proteins.
Biophysics (Nagoya-shi). 2005 Oct 19;1:55-65. doi: 10.2142/biophysics.1.55. eCollection 2005.
10
Understanding Ion Binding Affinity and Selectivity in β-Parvalbumin Using Molecular Dynamics and Mean Spherical Approximation Theory.
J Phys Chem B. 2016 Aug 25;120(33):8617-30. doi: 10.1021/acs.jpcb.6b02666. Epub 2016 Jul 1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验