Suppr超能文献

通过自由能模拟鉴定 TLR4-MD2 四聚体形成的关键残基。

Key residues in TLR4-MD2 tetramer formation identified by free energy simulations.

机构信息

Department of Biomedical Engineering and Genome Center, University of California, Davis, Davis, California, United States of America.

出版信息

PLoS Comput Biol. 2019 Oct 14;15(10):e1007228. doi: 10.1371/journal.pcbi.1007228. eCollection 2019 Oct.

Abstract

Toll-like receptors (TLRs) play a central role in both the innate and adaptive immune systems by recognizing pathogen-associated molecular patterns and inducing the release of the effector molecules of the immune system. The dysregulation of the TLR system may cause various autoimmune diseases and septic shock. A series of molecular dynamics simulations and free energy calculations were performed to investigate the ligand-free, lipopolysaccharide (LPS)-bound, and neoseptin3-bound (TLR4-MD2)2 tetramers. Compared to earlier simulations done by others, our simulations showed that TLR4 structure was well maintained with stable interfaces. Free energy decomposition by molecular mechanics Poisson-Boltzmann surface area (MM-PBSA) method suggests critical roles that two hydrophobic clusters I85-L87-P88 and I124-L125-P127 of MD2, together with LPS and neoseptin3, may play in TLR4 activation. We propose that 1) direct contacts between TLR4 convex surface and LPS and neoseptin3 at the region around L442 significantly increase the binding and 2) binding of LPS and neoseptin3 in the central hydrophobic cavity of MD2 triggers burial of F126 and exposure of I85-L87-P88 that facilitate formation of (TLR4-MD2)2 tetramer and activation of TLR4 system.

摘要

Toll 样受体 (TLRs) 通过识别病原体相关分子模式并诱导免疫系统效应分子的释放,在固有和适应性免疫系统中发挥核心作用。TLR 系统的失调可能导致各种自身免疫性疾病和感染性休克。我们进行了一系列分子动力学模拟和自由能计算,以研究无配体、脂多糖 (LPS) 结合和 neo 分泌素 3 结合 (TLR4-MD2)2 四聚体的 TLR4。与其他人之前的模拟相比,我们的模拟表明 TLR4 结构得到了很好的维持,具有稳定的界面。通过分子力学泊松-玻尔兹曼表面积 (MM-PBSA) 方法进行的自由能分解表明,MD2 的两个疏水区簇 I85-L87-P88 和 I124-L125-P127 以及 LPS 和 neo 分泌素 3 可能在 TLR4 激活中发挥关键作用。我们提出以下假设:1)TLR4 凸面与 LPS 和 neo 分泌素 3 在 L442 周围区域的直接接触显著增加了结合;2)LPS 和 neo 分泌素 3 在 MD2 的中央疏水区的结合触发 F126 的埋藏和 I85-L87-P88 的暴露,这有助于 (TLR4-MD2)2 四聚体的形成和 TLR4 系统的激活。

相似文献

1
Key residues in TLR4-MD2 tetramer formation identified by free energy simulations.
PLoS Comput Biol. 2019 Oct 14;15(10):e1007228. doi: 10.1371/journal.pcbi.1007228. eCollection 2019 Oct.
2
Sulforaphane inhibits the engagement of LPS with TLR4/MD2 complex by preferential binding to Cys133 in MD2.
Biochem Biophys Res Commun. 2013 May 10;434(3):600-5. doi: 10.1016/j.bbrc.2013.03.123. Epub 2013 Apr 11.
3
Dynamic lipopolysaccharide transfer cascade to TLR4/MD2 complex via LBP and CD14.
BMB Rep. 2017 Feb;50(2):55-57. doi: 10.5483/bmbrep.2017.50.2.011.
8
A Single Step Bioassay Mimicking TLR4-LPS Pathway and the Role of MD2 and CD14 Coreceptors.
Front Immunol. 2020 Jan 24;11:5. doi: 10.3389/fimmu.2020.00005. eCollection 2020.
10
A Thermodynamic Funnel Drives Bacterial Lipopolysaccharide Transfer in the TLR4 Pathway.
Structure. 2018 Aug 7;26(8):1151-1161.e4. doi: 10.1016/j.str.2018.04.007. Epub 2018 May 17.

引用本文的文献

1
Insights into the gut-liver axis: mechanisms and emerging therapies in hepatocellular carcinoma.
Front Pharmacol. 2025 May 19;16:1595853. doi: 10.3389/fphar.2025.1595853. eCollection 2025.
2
Unveiling the multifaceted role of toll-like receptors in immunity of aquatic animals: pioneering strategies for disease management.
Front Immunol. 2024 Oct 17;15:1378111. doi: 10.3389/fimmu.2024.1378111. eCollection 2024.
3
Amine headgroups in ionizable lipids drive immune responses to lipid nanoparticles by binding to the receptors TLR4 and CD1d.
Nat Biomed Eng. 2024 Nov;8(11):1483-1498. doi: 10.1038/s41551-024-01256-w. Epub 2024 Oct 3.
4
investigation and surmounting of Lipopolysaccharide barrier in Gram-Negative Bacteria: How far has molecular dynamics Come?
Comput Struct Biotechnol J. 2022 Oct 29;20:5886-5901. doi: 10.1016/j.csbj.2022.10.039. eCollection 2022.
6
Fighting Against Bacterial Lipopolysaccharide-Caused Infections through Molecular Dynamics Simulations: A Review.
J Chem Inf Model. 2021 Oct 25;61(10):4839-4851. doi: 10.1021/acs.jcim.1c00613. Epub 2021 Sep 24.
7
Recent Developments in Free Energy Calculations for Drug Discovery.
Front Mol Biosci. 2021 Aug 11;8:712085. doi: 10.3389/fmolb.2021.712085. eCollection 2021.
9
Structural Changes beyond the EF-Hand Contribute to Apparent Calcium Binding Affinities: Insights from Parvalbumins.
J Phys Chem B. 2021 Jun 24;125(24):6390-6405. doi: 10.1021/acs.jpcb.1c01269. Epub 2021 Jun 11.
10
TLR4-Targeting Therapeutics: Structural Basis and Computer-Aided Drug Discovery Approaches.
Molecules. 2020 Jan 31;25(3):627. doi: 10.3390/molecules25030627.

本文引用的文献

1
A Thermodynamic Funnel Drives Bacterial Lipopolysaccharide Transfer in the TLR4 Pathway.
Structure. 2018 Aug 7;26(8):1151-1161.e4. doi: 10.1016/j.str.2018.04.007. Epub 2018 May 17.
2
Recent progress in the discovery of myeloid differentiation 2 (MD2) modulators for inflammatory diseases.
Drug Discov Today. 2018 Jun;23(6):1187-1202. doi: 10.1016/j.drudis.2018.01.015. Epub 2018 Jan 9.
5
Computational Approaches to Toll-Like Receptor 4 Modulation.
Molecules. 2016 Jul 30;21(8):994. doi: 10.3390/molecules21080994.
6
Discovery and Structure-Activity Relationships of the Neoseptins: A New Class of Toll-like Receptor-4 (TLR4) Agonists.
J Med Chem. 2016 May 26;59(10):4812-30. doi: 10.1021/acs.jmedchem.6b00177. Epub 2016 Apr 25.
7
TLR4/MD-2 activation by a synthetic agonist with no similarity to LPS.
Proc Natl Acad Sci U S A. 2016 Feb 16;113(7):E884-93. doi: 10.1073/pnas.1525639113. Epub 2016 Feb 1.
9
MMPBSA.py: An Efficient Program for End-State Free Energy Calculations.
J Chem Theory Comput. 2012 Sep 11;8(9):3314-21. doi: 10.1021/ct300418h. Epub 2012 Aug 16.
10
PTRAJ and CPPTRAJ: Software for Processing and Analysis of Molecular Dynamics Trajectory Data.
J Chem Theory Comput. 2013 Jul 9;9(7):3084-95. doi: 10.1021/ct400341p. Epub 2013 Jun 25.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验