Suppr超能文献

表观扩散系数图纹理特征在预测肌层浸润性膀胱癌放化疗反应中的作用。

Usefulness of texture features of apparent diffusion coefficient maps in predicting chemoradiotherapy response in muscle-invasive bladder cancer.

机构信息

Department of Diagnostic Radiology, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-Ku, Tokyo, 113-8510, Japan.

Department of Urology, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-Ku, Tokyo, 113-8510, Japan.

出版信息

Eur Radiol. 2022 Jan;32(1):671-679. doi: 10.1007/s00330-021-08110-6. Epub 2021 Jun 13.

Abstract

OBJECTIVES

To examine the usefulness of the texture analysis (TA) of apparent diffusion coefficient (ADC) maps in predicting the chemoradiotherapy (CRT) response of muscle-invasive bladder cancer (MIBC).

METHODS

We reviewed 45 MIBC patients who underwent cystectomy after CRT. CRT response was assessed through histologic evaluation of cystectomy specimens. Two radiologists determined the volume of interest for the index lesions on ADC maps of pretherapeutic 1.5-T MRI and performed TA using the LIFEx software. Forty-six texture features (TFs) were selected based on their contribution to the prediction of CRT sensitivity. To evaluate diagnostic performance, diagnostic models from the selected TFs were created using random forest (RF) and support vector machine (SVM), respectively.

RESULTS

Twenty-three patients achieved pathologic complete response (pCR) to CRT. The feature selection identified first quartile ADC (Q1 ADC), gray-level co-occurrence matrix (GLCM) correlation, and GLCM homogeneity as important in predicting CRT response. Patients who achieved pCR showed significantly lower Q1 ADC and GLCM correlation values (0.66 × 10 mm/s and 0.53, respectively) than those who did not (0.81 × 10 mm/s and 0.70, respectively; p < 0.05 for both). The AUCs of the RF and SVM models incorporating the selected TFs were 0.82 (95% confidence interval [CI]: 0.67-0.97) and 0.96 (95% CI: 0.91-1.00), respectively, and the AUC of the SVM model was better than that of the mean ADC value (0.76, 95% CI: 0.61-0.90; p = 0.0037).

CONCLUSION

TFs can serve as imaging biomarkers in MIBC patients for predicting CRT sensitivity. TAs of ADC maps can potentially optimize patient selection for CRT.

KEY POINTS

• Texture analysis of ADC maps and feature selection identified important texture features for classifying pathologic tumor response in patients with muscle-invasive bladder cancer. • The machine learning model incorporating the texture features set, which included first quartile ADC, GLCM correlation, and GLCM homogeneity, showed high performance in predicting chemoradiotherapy response. • Texture features could serve as imaging biomarkers that optimize eligible patient selection for chemoradiotherapy in muscle-invasive bladder cancer.

摘要

目的

探讨表观扩散系数(ADC)图纹理分析(TA)在预测肌层浸润性膀胱癌(MIBC)放化疗(CRT)反应中的作用。

方法

我们回顾了 45 例 MIBC 患者,这些患者在 CRT 后接受了膀胱切除术。通过对膀胱切除标本的组织学评估来评估 CRT 反应。两名放射科医生在术前 1.5T MRI 的 ADC 图上确定指数病变的感兴趣区域,并使用 LIFEx 软件进行 TA。根据对 CRT 敏感性预测的贡献,选择了 46 个纹理特征(TFs)。为了评估诊断性能,分别使用随机森林(RF)和支持向量机(SVM)从选定的 TFs 中创建诊断模型。

结果

23 例患者达到 CRT 病理完全缓解(pCR)。特征选择确定了第一四分位数 ADC(Q1 ADC)、灰度共生矩阵(GLCM)相关和 GLCM 同质性在预测 CRT 反应中很重要。达到 pCR 的患者的 Q1 ADC 和 GLCM 相关性值(分别为 0.66×10mm/s 和 0.53)显著低于未达到 pCR 的患者(分别为 0.81×10mm/s 和 0.70;均 p<0.05)。纳入选定 TFs 的 RF 和 SVM 模型的 AUC 分别为 0.82(95%置信区间[CI]:0.67-0.97)和 0.96(95%CI:0.91-1.00),SVM 模型的 AUC 优于平均 ADC 值(0.76,95%CI:0.61-0.90;p=0.0037)。

结论

TFs 可作为 MIBC 患者预测 CRT 敏感性的影像学生物标志物。ADC 图的 TA 可能可以优化 MIBC 患者接受 CRT 的选择。

关键点

  1. ADC 图纹理分析和特征选择确定了用于分类 MIBC 患者肿瘤病理反应的重要纹理特征。

  2. 纳入 ADC 图纹理特征集的机器学习模型,包括第一四分位数 ADC、GLCM 相关和 GLCM 同质性,在预测 CRT 反应方面表现出较高的性能。

  3. 纹理特征可以作为影像学生物标志物,优化 MIBC 患者接受 CRT 的选择。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验