Department of Molecular Pharmacology and Therapeutics, Columbia University, Vagelos College of Physicians and Surgeons, New York, NY, United States.
Department of Molecular Pharmacology and Therapeutics, Columbia University, Vagelos College of Physicians and Surgeons, New York, NY, United States; Department of Physiology and Cellular Biophysics, Columbia University, Vagelos College of Physicians and Surgeons, New York, NY, United States.
Methods Enzymol. 2021;654:139-167. doi: 10.1016/bs.mie.2021.03.007. Epub 2021 Apr 7.
Plasma membrane-localized ion channels are essential for diverse physiological processes such as neurotransmission, muscle contraction, and osmotic homeostasis. The surface density of such ion channels is a major determinant of their function, and tuning this variable is a powerful way to regulate physiology. Dysregulation of ion channel surface density due to inherited or de novo mutations underlies many serious diseases, and molecules that can correct trafficking deficits are potential therapeutics and useful research tools. We have developed targeted ubiquitination and deubiquitination approaches that enable selective posttranslational down- or up-regulation, respectively, of desired ion channels. The method employs bivalent molecules comprised of an ion-channel-targeted nanobody fused to catalytic domains of either an E3 ubiquitin ligase or a deubiquitinase. Here, we use two examples to provide detailed protocols that illustrate the utility of the approach-rescued surface expression of a trafficking-deficient mutant K7.1 (KCNQ1) channel that causes long QT syndrome, and selective elimination of the Ca2.2 voltage-gated calcium channel from the plasma membrane using targeted ubiquitination. Important aspects of the approach include having a robust assay to measure ion channel surface density and generating nanobody binders to cytosolic domains or subunits of targeted ion channels. Accordingly, we also review available methods for determining ion channel surface density and nanobody selection.
质膜定位的离子通道对于多种生理过程至关重要,如神经递质传递、肌肉收缩和渗透稳态。这些离子通道的表面密度是其功能的主要决定因素,调节这一变量是调节生理功能的一种有效方法。由于遗传或新生突变导致的离子通道表面密度失调是许多严重疾病的基础,能够纠正运输缺陷的分子是潜在的治疗药物和有用的研究工具。我们已经开发了靶向泛素化和去泛素化方法,分别能够选择性地对所需的离子通道进行翻译后下调或上调。该方法采用二价分子,由与 E3 泛素连接酶或去泛素酶的催化结构域融合的靶向离子通道的纳米抗体组成。在这里,我们使用两个例子提供了详细的方案,说明了该方法的实用性——恢复引起长 QT 综合征的运输缺陷型 K7.1(KCNQ1)通道的表面表达,以及使用靶向泛素化选择性地从质膜中消除 Ca2.2 电压门控钙通道。该方法的重要方面包括具有强大的测定离子通道表面密度的方法,并生成靶向离子通道的胞质结构域或亚基的纳米抗体结合物。因此,我们还回顾了确定离子通道表面密度和纳米抗体选择的现有方法。