Randall Centre for Cell & Molecular Biophysics, New Hunt's House, Guy's Campus, King's College London, London, United Kingdom.
Elife. 2021 Jun 14;10:e68211. doi: 10.7554/eLife.68211.
Time-resolved X-ray diffraction of isolated fast-twitch muscles of mice was used to show how structural changes in the myosin-containing thick filaments contribute to the regulation of muscle contraction, extending the previous focus on regulation by the actin-containing thin filaments. This study shows that muscle activation involves the following sequence of structural changes: thin filament activation, disruption of the helical array of myosin motors characteristic of resting muscle, release of myosin motor domains from the folded conformation on the filament backbone, and actin attachment. Physiological force generation in the 'twitch' response of skeletal muscle to single action potential stimulation is limited by incomplete activation of the thick filament and the rapid inactivation of both filaments. Muscle relaxation after repetitive stimulation is accompanied by a complete recovery of the folded motor conformation on the filament backbone but by incomplete reformation of the helical array, revealing a structural basis for post-tetanic potentiation in isolated muscles.
采用时间分辨 X 射线衍射技术对分离的快速抽搐肌肉小鼠进行研究,以展示肌球蛋白含有的粗丝结构变化如何参与肌肉收缩的调节,从而扩展了之前对肌动蛋白含有的细丝调节的关注。这项研究表明,肌肉激活涉及以下结构变化序列:细丝激活、破坏静息肌肉中肌球蛋白马达特征的螺旋排列、肌球蛋白马达结构域从细丝骨架上的折叠构象释放,以及肌动蛋白附着。在单个动作电位刺激下骨骼肌的“抽搐”反应中的生理力产生受到粗丝不完全激活和两条细丝快速失活的限制。重复刺激后的肌肉放松伴随着细丝骨架上折叠马达构象的完全恢复,但螺旋排列的不完全重建,这揭示了分离肌肉中强直后增强的结构基础。