Chen Yuxiang, Zhou Meng, Li Qi, Gronlund Harrison, Jin Rongchao
Department of Chemistry, Carnegie Mellon University Pennsylvania 15213 USA
Chem Sci. 2020 Jul 17;11(31):8176-8183. doi: 10.1039/d0sc01270j.
Understanding the origin and structural basis of the photoluminescence (PL) phenomenon in thiolate-protected metal nanoclusters is of paramount importance for both fundamental science and practical applications. It remains a major challenge to correlate the PL properties with the atomic-level structure due to the complex interplay of the metal core ( the inner kernel) and the exterior shell ( surface Au(i)-thiolate staple motifs). Decoupling these two intertwined structural factors is critical in order to understand the PL origin. Herein, we utilize two Au(SR) nanoclusters with different -R groups, which possess the same core but different shell structures and thus provide an ideal system for the PL study. We discover that the Au(CHT) (CHT: cyclohexanethiolate) nanocluster exhibits a more than 15-fold higher PL quantum yield than the Au(TBBT) nanocluster (TBBT: -butylbenzenethiolate). Such an enhancement is found to originate from the different structural arrangement of the staple motifs in the shell, which modifies the electron relaxation dynamics in the inner core to different extents for the two nanoclusters. The emergence of a long PL lifetime component in the more emissive Au(CHT) nanocluster reveals that its PL is enhanced by suppressing the nonradiative pathway. The presence of long, interlocked staple motifs is further identified as a key structural parameter that favors the luminescence. Overall, this work offers structural insights into the PL origin in Au(SR) nanoclusters and provides some guidelines for designing luminescent metal nanoclusters for sensing and optoelectronic applications.
理解硫醇盐保护的金属纳米团簇中光致发光(PL)现象的起源和结构基础,对于基础科学和实际应用都至关重要。由于金属核(内核)和外壳(表面金(I)-硫醇盐主链基序)之间复杂的相互作用,将PL性质与原子级结构相关联仍然是一个重大挑战。为了理解PL起源,解开这两个相互交织的结构因素至关重要。在此,我们利用两个具有不同-R基团的Au(SR)纳米团簇,它们具有相同的核但不同的壳结构,因此为PL研究提供了一个理想的体系。我们发现Au(CHT)(CHT:环己硫醇盐)纳米团簇的PL量子产率比Au(TBBT)纳米团簇(TBBT:叔丁基苯硫醇盐)高15倍以上。这种增强被发现源于壳中主链基序的不同结构排列,这对两个纳米团簇的内核中的电子弛豫动力学有不同程度的影响。在发射更强的Au(CHT)纳米团簇中出现长PL寿命成分,表明其PL通过抑制非辐射途径而增强。长的、相互锁定的主链基序的存在进一步被确定为有利于发光的关键结构参数。总体而言,这项工作为Au(SR)纳米团簇中PL起源提供了结构见解,并为设计用于传感和光电子应用的发光金属纳米团簇提供了一些指导。