Department of Microbiology, Gargi College, University of Delhi, New Delhi, India.
Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, Chiba, Japan.
Prog Mol Biol Transl Sci. 2021;181:15-30. doi: 10.1016/bs.pmbts.2021.01.011. Epub 2021 Mar 8.
In the past decade, ZFNs and TALENs have been used for targeted genome engineering and have gained scientific attention. It has demonstrated huge potential for gene knockout, knock-in, and indels in desired locations of genomes to understand molecular mechanism of diseases and also discover therapy. However, both the genome engineering techniques are still suffering from design, screening and validation in cell and higher organisms. CRISPR-Cas9 is a rapid, simple, specific, and versatile technology and it has been applied in many organisms including mammalian cells. CRISPR-Cas9 has been used for animal models to modify animal cells for understanding human disease for novel drug discovery and therapy. Additionally, base editing has also been discussed herewith for conversion of C/G-to-T/A or A/T-to-G/C without DNA cleavage or donor DNA templates for correcting mutations or altering gene functions. In this chapter, we highlight CRISPR-Cas9 and base editing for desired genome editing in mammalian cells for a better understanding of molecular mechanisms, and biotechnological and therapeutic applications.
在过去的十年中,ZFN 和 TALEN 已被用于靶向基因组工程,并引起了科学界的关注。它们在基因组的期望位置上进行基因敲除、敲入和插入/缺失方面具有巨大的潜力,可用于理解疾病的分子机制并发现治疗方法。然而,这两种基因组工程技术仍然在细胞和高等生物中面临设计、筛选和验证的困难。CRISPR-Cas9 是一种快速、简单、特异和多功能的技术,已被应用于包括哺乳动物细胞在内的许多生物中。CRISPR-Cas9 已被用于动物模型,以修饰动物细胞,从而了解人类疾病,用于新型药物发现和治疗。此外,本文还讨论了碱基编辑技术,该技术可在不进行 DNA 切割或使用供体 DNA 模板的情况下,将 C/G 转换为 T/A 或 A/T 转换为 G/C,从而纠正突变或改变基因功能。在本章中,我们重点介绍了 CRISPR-Cas9 和碱基编辑在哺乳动物细胞中的应用,以更好地理解分子机制以及生物技术和治疗应用。