Suppr超能文献

CRISPR-Cas 系统在神经科学中的应用。

Application of CRISPR-Cas systems in neuroscience.

机构信息

Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, Homi Bhabha National Institute (HBNI), Kolkata, India.

Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, Homi Bhabha National Institute (HBNI), Kolkata, India.

出版信息

Prog Mol Biol Transl Sci. 2021;178:231-264. doi: 10.1016/bs.pmbts.2020.12.010. Epub 2021 Feb 24.

Abstract

CRISPR-Cas systems have, over the years, emerged as indispensable tools for Genetic interrogation in contexts of clinical interventions, elucidation of genetic pathways and metabolic engineering and have pervaded almost every aspect of modern biology. Within this repertoire, the nervous system comes with its own set of perplexities and mysteries. Scientists have, over the years, tried to draw up a clearer genetic picture of the neuron and how it functions in a network, mainly in an endeavor to mitigate diseases of the human nervous system like Alzheimer's, Parkinson's, Huntington's, Autism Spectrum Disorder (ASD), etc. With most being progressive in nature, these diseases have plagued mankind for centuries. In spite of our immense progress in modern biology, we are yet to get a grasp over these diseases and unraveling their mechanisms is of utmost importance. Before CRISPR-Cas systems came along, the elucidation of the complex interactome of the mammalian nervous system was attempted with erstwhile existing electrophysiological, histological and pharmacological techniques coupled with Next Generation Sequencing and cell-specific targeting technologies. Zinc finger nucleases (ZFNs) and transcription activator-like effector nucleases (TALENs), imparted excellent sequence specific DNA targeting capabilities but came with their huge baggage of extensive protein engineering requirements, which practically rendered them unsuitable for high throughput exercises. With the discovery of Clustered Regularly Interspaced Palindromic Repeats (CRISPR) and CRISPR Associated proteins(CAS) systems by Ishino (1987), the era of extensive custom made endonuclease targeting was ushered in. For the first time in 2012, Jinek et al. (2012) repurposed the CRISPR-Cas mediated bacterial immune system for customizable mammalian gene editing. The CRISPR-Cas technology made it possible to easily customize Cas9 endonucleases to cleave near specifically targeted sequences, thereby facilitating knock-ins or knock-outs, silencing or activating or editing any gene, at any locus of the genome, both at the base-pair level or at the epigenetic level. With this enhanced degree of freedom, decrypting the nervous system and therapeutic interventions for neuropathies became significantly less cumbersome an exercise. Here we take a brisk walk through the several endeavors of research that show how the humble bacteria's CRISPR-Cas system gave us the "nerves" to "talk" to our nerves with ease.

摘要

CRISPR-Cas 系统多年来已成为临床干预、遗传途径阐明和代谢工程中不可或缺的工具,并已渗透到现代生物学的几乎各个方面。在这个工具库中,神经系统带来了自己的一系列困惑和谜团。多年来,科学家们一直试图更清楚地了解神经元的遗传特征以及它在网络中的功能,主要是为了减轻人类神经系统疾病,如阿尔茨海默病、帕金森病、亨廷顿病、自闭症谱系障碍 (ASD) 等。这些疾病大多具有进展性,困扰了人类几个世纪。尽管我们在现代生物学方面取得了巨大的进步,但我们仍未掌握这些疾病,揭示其机制至关重要。在 CRISPR-Cas 系统出现之前,人们曾尝试使用现有的电生理学、组织学和药理学技术,结合下一代测序和细胞特异性靶向技术,来阐明哺乳动物神经系统的复杂相互作用组。锌指核酸酶 (ZFNs) 和转录激活因子样效应核酸酶 (TALENs) 具有出色的序列特异性 DNA 靶向能力,但它们需要大量的蛋白质工程要求,这使得它们实际上不适合高通量实验。随着 Ishino(1987 年)发现了规律成簇间隔短回文重复序列 (CRISPR) 和 CRISPR 相关蛋白 (Cas) 系统,广泛定制内切酶靶向的时代已经到来。2012 年,Jinek 等人首次(2012 年)重新利用 CRISPR-Cas 介导的细菌免疫系统进行可定制的哺乳动物基因编辑。CRISPR-Cas 技术使我们能够轻松地将 Cas9 内切酶定制为切割特定的近靶序列,从而促进基因敲入或敲除、基因沉默或激活或编辑任何基因,在基因组的任何基因座,无论是在碱基对水平还是在表观遗传水平。有了这种增强的自由度,解密神经系统和神经病变的治疗干预措施变得不那么繁琐。在这里,我们快速浏览一下几项研究成果,这些成果展示了 humble bacteria 的 CRISPR-Cas 系统如何让我们轻松地与我们的神经系统“对话”。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验