Suppr超能文献

严重急性呼吸综合征冠状病毒2(SARS-CoV-2)B.1.1.7英国变种增强先天免疫逃逸能力的演变

Evolution of enhanced innate immune evasion by the SARS-CoV-2 B.1.1.7 UK variant.

作者信息

Thorne Lucy G, Bouhaddou Mehdi, Reuschl Ann-Kathrin, Zuliani-Alvarez Lorena, Polacco Ben, Pelin Adrian, Batra Jyoti, Whelan Matthew V X, Ummadi Manisha, Rojc Ajda, Turner Jane, Obernier Kirsten, Braberg Hannes, Soucheray Margaret, Richards Alicia, Chen Kuei-Ho, Harjai Bhavya, Memon Danish, Hosmillo Myra, Hiatt Joseph, Jahun Aminu, Goodfellow Ian G, Fabius Jacqueline M, Shokat Kevan, Jura Natalia, Verba Klim, Noursadeghi Mahdad, Beltrao Pedro, Swaney Danielle L, Garcia-Sastre Adolfo, Jolly Clare, Towers Greg J, Krogan Nevan J

机构信息

Division of Infection and Immunity, University College London, London, WC1E 6BT, United Kingdom.

Quantitative Biosciences Institute (QBI) Coronavirus Research Group (QCRG), San Francisco, CA 94158, USA.

出版信息

bioRxiv. 2021 Jun 7:2021.06.06.446826. doi: 10.1101/2021.06.06.446826.

Abstract

Emergence of SARS-CoV-2 variants, including the globally successful B.1.1.7 lineage, suggests viral adaptations to host selective pressures resulting in more efficient transmission. Although much effort has focused on Spike adaptation for viral entry and adaptive immune escape, B.1.1.7 mutations outside Spike likely contribute to enhance transmission. Here we used unbiased abundance proteomics, phosphoproteomics, mRNA sequencing and viral replication assays to show that B.1.1.7 isolates more effectively suppress host innate immune responses in airway epithelial cells. We found that B.1.1.7 isolates have dramatically increased subgenomic RNA and protein levels of Orf9b and Orf6, both known innate immune antagonists. Expression of Orf9b alone suppressed the innate immune response through interaction with TOM70, a mitochondrial protein required for RNA sensing adaptor MAVS activation, and Orf9b binding and activity was regulated via phosphorylation. We conclude that B.1.1.7 has evolved beyond the Spike coding region to more effectively antagonise host innate immune responses through upregulation of specific subgenomic RNA synthesis and increased protein expression of key innate immune antagonists. We propose that more effective innate immune antagonism increases the likelihood of successful B.1.1.7 transmission, and may increase replication and duration of infection.

摘要

包括在全球广泛传播的B.1.1.7谱系在内的严重急性呼吸综合征冠状病毒2(SARS-CoV-2)变体的出现,表明病毒为适应宿主选择压力而发生了变异,从而实现了更高效的传播。尽管人们将大量精力集中在刺突蛋白(Spike)的适应性变化以实现病毒进入细胞及逃避适应性免疫方面,但Spike蛋白之外的B.1.1.7突变可能也有助于增强病毒传播。在此,我们运用无偏差定量蛋白质组学、磷酸化蛋白质组学、mRNA测序及病毒复制试验,以证明B.1.1.7毒株能更有效地抑制气道上皮细胞中的宿主固有免疫反应。我们发现,B.1.1.7毒株显著提高了已知的固有免疫拮抗剂Orf9b和Orf6的亚基因组RNA及蛋白质水平。单独表达Orf9b可通过与TOM70相互作用来抑制固有免疫反应,TOM70是RNA传感衔接蛋白MAVS激活所需的一种线粒体蛋白,且Orf9b的结合及活性受磷酸化作用调控。我们得出结论,B.谱系1.1.7已在Spike编码区域之外发生进化,通过上调特定亚基因组RNA合成及增加关键固有免疫拮抗剂的蛋白质表达,更有效地对抗宿主固有免疫反应。我们认为,更有效的固有免疫对抗作用增加了B.1.1.7成功传播的可能性,并可能增加病毒复制及感染持续时间。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d410/8202424/e790c72d97e4/nihpp-2021.06.06.446826v1-f0001.jpg

相似文献

1
Evolution of enhanced innate immune evasion by the SARS-CoV-2 B.1.1.7 UK variant.
bioRxiv. 2021 Jun 7:2021.06.06.446826. doi: 10.1101/2021.06.06.446826.
2
Evolution of enhanced innate immune evasion by SARS-CoV-2.
Nature. 2022 Feb;602(7897):487-495. doi: 10.1038/s41586-021-04352-y. Epub 2021 Dec 23.
4
Binding of SARS-CoV-2 protein ORF9b to mitochondrial translocase TOM70 prevents its interaction with chaperone HSP90.
Biochimie. 2022 Sep;200:99-106. doi: 10.1016/j.biochi.2022.05.016. Epub 2022 May 26.
5
Structural characterization of SARS-CoV-2 dimeric ORF9b reveals potential fold-switching trigger mechanism.
Sci China Life Sci. 2023 Jan;66(1):152-164. doi: 10.1007/s11427-022-2168-8. Epub 2022 Sep 29.
7
SARS-CoV-2 variants evolve convergent strategies to remodel the host response.
Cell. 2023 Oct 12;186(21):4597-4614.e26. doi: 10.1016/j.cell.2023.08.026. Epub 2023 Sep 21.
8
Pressure to evade cell-autonomous innate sensing reveals interplay between mitophagy, IFN signaling, and SARS-CoV-2 evolution.
Cell Rep. 2025 Jan 28;44(1):115115. doi: 10.1016/j.celrep.2024.115115. Epub 2024 Dec 20.
10
Evolution of enhanced innate immune suppression by SARS-CoV-2 Omicron subvariants.
Nat Microbiol. 2024 Feb;9(2):451-463. doi: 10.1038/s41564-023-01588-4. Epub 2024 Jan 16.

引用本文的文献

2
SARS-CoV-2 variant Alpha has a spike-dependent replication advantage over the ancestral B.1 strain in human cells with low ACE2 expression.
PLoS Biol. 2022 Nov 16;20(11):e3001871. doi: 10.1371/journal.pbio.3001871. eCollection 2022 Nov.
3
Pathogen evolution during vaccination campaigns.
PLoS Biol. 2022 Sep 23;20(9):e3001804. doi: 10.1371/journal.pbio.3001804. eCollection 2022 Sep.
4
Human coronaviruses disassemble processing bodies.
PLoS Pathog. 2022 Aug 23;18(8):e1010724. doi: 10.1371/journal.ppat.1010724. eCollection 2022 Aug.
5
Advances and gaps in SARS-CoV-2 infection models.
PLoS Pathog. 2022 Jan 13;18(1):e1010161. doi: 10.1371/journal.ppat.1010161. eCollection 2022 Jan.
6
TOM70 in Glial Cells as a Potential Target for Treatment of COVID-19.
Front Cell Neurosci. 2021 Dec 24;15:811376. doi: 10.3389/fncel.2021.811376. eCollection 2021.
7
Innate Immunity Evasion Strategies of Highly Pathogenic Coronaviruses: SARS-CoV, MERS-CoV, and SARS-CoV-2.
Front Microbiol. 2021 Oct 29;12:770656. doi: 10.3389/fmicb.2021.770656. eCollection 2021.
8
S-farnesylation is essential for antiviral activity of the long ZAP isoform against RNA viruses with diverse replication strategies.
PLoS Pathog. 2021 Oct 25;17(10):e1009726. doi: 10.1371/journal.ppat.1009726. eCollection 2021 Oct.
9
The biological and clinical significance of emerging SARS-CoV-2 variants.
Nat Rev Genet. 2021 Dec;22(12):757-773. doi: 10.1038/s41576-021-00408-x. Epub 2021 Sep 17.

本文引用的文献

1
Interferon resistance of emerging SARS-CoV-2 variants.
Proc Natl Acad Sci U S A. 2022 Aug 9;119(32):e2203760119. doi: 10.1073/pnas.2203760119. Epub 2022 Jul 22.
3
SARS-CoV-2 activates lung epithelial cell proinflammatory signaling and leads to immune dysregulation in COVID-19 patients.
EBioMedicine. 2021 Aug;70:103500. doi: 10.1016/j.ebiom.2021.103500. Epub 2021 Jul 23.
4
SARS-CoV-2 sensing by RIG-I and MDA5 links epithelial infection to macrophage inflammation.
EMBO J. 2021 Aug 2;40(15):e107826. doi: 10.15252/embj.2021107826. Epub 2021 Jul 2.
6
Systematic functional analysis of SARS-CoV-2 proteins uncovers viral innate immune antagonists and remaining vulnerabilities.
Cell Rep. 2021 May 18;35(7):109126. doi: 10.1016/j.celrep.2021.109126. Epub 2021 Apr 27.
7
The furin cleavage site in the SARS-CoV-2 spike protein is required for transmission in ferrets.
Nat Microbiol. 2021 Jul;6(7):899-909. doi: 10.1038/s41564-021-00908-w. Epub 2021 Apr 27.
8
Emergence and rapid transmission of SARS-CoV-2 B.1.1.7 in the United States.
Cell. 2021 May 13;184(10):2587-2594.e7. doi: 10.1016/j.cell.2021.03.052. Epub 2021 Mar 30.
10
Sensitivity of infectious SARS-CoV-2 B.1.1.7 and B.1.351 variants to neutralizing antibodies.
Nat Med. 2021 May;27(5):917-924. doi: 10.1038/s41591-021-01318-5. Epub 2021 Mar 26.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验