Suppr超能文献

纤毛和高尔基体蛋白的分子复合物对于颅骨发育至关重要。

The molecular complex of ciliary and golgin protein is crucial for skull development.

机构信息

Department of Pediatrics, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA.

Shared Equipment Authority, Rice University, Houston, TX 77005, USA.

出版信息

Development. 2021 Jul 1;148(13). doi: 10.1242/dev.199559.

Abstract

Intramembranous ossification, which consists of direct conversion of mesenchymal cells to osteoblasts, is a characteristic process in skull development. One crucial role of these osteoblasts is to secrete collagen-containing bone matrix. However, it remains unclear how the dynamics of collagen trafficking is regulated during skull development. Here, we reveal the regulatory mechanisms of ciliary and golgin proteins required for intramembranous ossification. During normal skull formation, osteoblasts residing on the osteogenic front actively secreted collagen. Mass spectrometry and proteomic analysis determined endogenous binding between ciliary protein IFT20 and golgin protein GMAP210 in these osteoblasts. As seen in Ift20 mutant mice, disruption of neural crest-specific GMAP210 in mice caused osteopenia-like phenotypes due to dysfunctional collagen trafficking. Mice lacking both IFT20 and GMAP210 displayed more severe skull defects compared with either IFT20 or GMAP210 mutants. These results demonstrate that the molecular complex of IFT20 and GMAP210 is essential for the intramembranous ossification during skull development.

摘要

膜内成骨,即间充质细胞直接转化为成骨细胞,是颅骨发育的一个特征过程。这些成骨细胞的一个关键作用是分泌含有胶原蛋白的骨基质。然而,胶原蛋白运输的动力学如何在颅骨发育过程中被调节仍不清楚。在这里,我们揭示了膜内成骨所必需的纤毛和高尔基体蛋白的调节机制。在正常颅骨形成过程中,位于成骨前缘的成骨细胞积极分泌胶原蛋白。质谱和蛋白质组学分析确定了内源性纤毛蛋白 IFT20 与高尔基体蛋白 GMAP210 之间的结合。正如在 Ift20 突变小鼠中所见,破坏神经嵴特异性 GMAP210 会导致胶原运输功能障碍,从而引起类骨质疏松表型。与 IFT20 或 GMAP210 突变体相比,缺乏 IFT20 和 GMAP210 的小鼠表现出更严重的颅骨缺陷。这些结果表明,IFT20 和 GMAP210 的分子复合物对于颅骨发育过程中的膜内成骨是必不可少的。

相似文献

1
The molecular complex of ciliary and golgin protein is crucial for skull development.
Development. 2021 Jul 1;148(13). doi: 10.1242/dev.199559.
2
The Golgin GMAP210/TRIP11 anchors IFT20 to the Golgi complex.
PLoS Genet. 2008 Dec;4(12):e1000315. doi: 10.1371/journal.pgen.1000315. Epub 2008 Dec 26.
3
Canonical and noncanonical intraflagellar transport regulates craniofacial skeletal development.
Proc Natl Acad Sci U S A. 2016 May 10;113(19):E2589-97. doi: 10.1073/pnas.1519458113. Epub 2016 Apr 26.
5
Golgin-160 and GMAP210 play an important role in U251 cells migration and invasion initiated by GDNF.
PLoS One. 2019 Jan 29;14(1):e0211501. doi: 10.1371/journal.pone.0211501. eCollection 2019.
6
Abnormal fertility, acrosome formation, IFT20 expression and localization in conditional knockout mice.
Am J Physiol Cell Physiol. 2020 Jan 1;318(1):C174-C190. doi: 10.1152/ajpcell.00517.2018. Epub 2019 Oct 2.
7
IFT20 is critical for collagen biosynthesis in craniofacial bone formation.
Biochem Biophys Res Commun. 2020 Dec 17;533(4):739-744. doi: 10.1016/j.bbrc.2020.09.033. Epub 2020 Sep 28.
8
IFT20 is required for the maintenance of cartilaginous matrix in condylar cartilage.
Biochem Biophys Res Commun. 2019 Jan 29;509(1):222-226. doi: 10.1016/j.bbrc.2018.12.107. Epub 2018 Dec 23.
10
Export of membrane proteins from the Golgi complex to the primary cilium requires the kinesin motor, KIFC1.
FASEB J. 2018 Feb;32(2):957-968. doi: 10.1096/fj.201700563R. Epub 2018 Jan 4.

引用本文的文献

1
Multiple golgins are required to support extracellular matrix secretion, modification, and assembly.
J Cell Biol. 2025 Oct 6;224(10). doi: 10.1083/jcb.202411167. Epub 2025 Aug 18.
2
Self-propagating wave drives morphogenesis of skull bones in vivo.
Nat Commun. 2025 May 9;16(1):4330. doi: 10.1038/s41467-025-59164-9.
3
A novel perspective of calvarial development: the cranial morphogenesis and differentiation regulated by dura mater.
Front Cell Dev Biol. 2024 Jun 24;12:1420891. doi: 10.3389/fcell.2024.1420891. eCollection 2024.
5
Enhanced BMP signaling in Cathepsin K-positive tendon progenitors induces heterotopic ossification.
Biochem Biophys Res Commun. 2023 Dec 25;688:149147. doi: 10.1016/j.bbrc.2023.149147. Epub 2023 Oct 24.
7
In vivo characterization of Drosophila golgins reveals redundancy and plasticity of vesicle capture at the Golgi apparatus.
Curr Biol. 2022 Nov 7;32(21):4549-4564.e6. doi: 10.1016/j.cub.2022.08.054. Epub 2022 Sep 13.

本文引用的文献

1
IFT20 is critical for collagen biosynthesis in craniofacial bone formation.
Biochem Biophys Res Commun. 2020 Dec 17;533(4):739-744. doi: 10.1016/j.bbrc.2020.09.033. Epub 2020 Sep 28.
2
3
Pathogenic variants in the TRIP11 gene cause a skeletal dysplasia spectrum from odontochondrodysplasia to achondrogenesis 1A.
Am J Med Genet A. 2020 Apr;182(4):681-688. doi: 10.1002/ajmg.a.61460. Epub 2020 Jan 5.
4
Historical contingency shapes adaptive radiation in Antarctic fishes.
Nat Ecol Evol. 2019 Jul;3(7):1102-1109. doi: 10.1038/s41559-019-0914-2. Epub 2019 Jun 10.
5
Hypomorphic mutations of TRIP11 cause odontochondrodysplasia.
JCI Insight. 2019 Feb 7;4(3):e124701. doi: 10.1172/jci.insight.124701.
6
IFT20 is required for the maintenance of cartilaginous matrix in condylar cartilage.
Biochem Biophys Res Commun. 2019 Jan 29;509(1):222-226. doi: 10.1016/j.bbrc.2018.12.107. Epub 2018 Dec 23.
7
IFT20 modulates ciliary PDGFRα signaling by regulating the stability of Cbl E3 ubiquitin ligases.
J Cell Biol. 2018 Jan 2;217(1):151-161. doi: 10.1083/jcb.201611050. Epub 2017 Dec 13.
8
The skeletal phenotype of achondrogenesis type 1A is caused exclusively by cartilage defects.
Development. 2018 Jan 8;145(1):dev156588. doi: 10.1242/dev.156588.
9
Genes and molecular pathways underpinning ciliopathies.
Nat Rev Mol Cell Biol. 2017 Sep;18(9):533-547. doi: 10.1038/nrm.2017.60. Epub 2017 Jul 12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验